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Intelligent Driving Fusion Algorithm Research: sparse algorithms, temporal fusion and 
enhanced planning and control become the trend

China Intelligent Driving Fusion Algorithm Research Report, 2024 released by ResearchInChina analyzes the status quo 
and trends of intelligent driving fusion algorithms (including perception, positioning, prediction, planning, decision, etc.), sorts 
out algorithm solutions and cases of chip vendors, OEMs, Tier1 & Tier2 suppliers and L4 algorithm providers, and summarizes 
the development trends of intelligent driving algorithms.

Since the period of eight months from Musk's live test drive of FSD V12 Beta in August 2023 to the 30-day free trial of FSD 
V12 Supervised in March 2024, advanced intelligent driving such as urban NOA has begun to become the arena of major 
OEMs, and there have been ever more application cases for end-to-end algorithms, BEV Transformer algorithms, and AI 
foundation model algorithms.

1. Sparse algorithms improve efficiency and reduce intelligent driving cost.

At present, most BEV algorithms are dense and consume considerable computing power and storage. The smoothness of 
more than 30 frames per second requires expensive computing resources such as NVIDIA A100. Even so, only 5 to 6 2MP 
cameras can be supported. For 8MP cameras, extremely expensive resources like multiple H100 GPUs are needed.

Our real world has sparse features. Sparsification helps sensors reduce noise and improve robustness. In addition, as 
distance increases, grids are bound to be sparse, and a dense network can only be maintained within about 50 meters. By 
reducing queries and feature interactions, sparse perception algorithms speed up calculations and lower storage requirements, 
greatly improve the computing efficiency and system performance of the perception model, shorten the system latency, 
expand the perception accuracy range, and ease the impact of vehicle speed.
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Architecture of Sparse4D
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The academia has shifted to sparse target-level algorithms

Therefore, the academia has shifted to sparse target-level algorithms rather than dense grid-based algorithms since 2021. 
With long-term efforts, sparse target-level algorithms can perform almost as well as dense grid-based algorithms. The 
industry also keeps iterating sparse algorithms. Recently, Horizon Robotics has open-sourced Sparse4D, its vision-only 
algorithm which ranks first on both nuScenes vision-only 3D detection and 3D tracking lists. 

Sparse4D is a series of algorithms moving towards long-time-sequence sparse 3D target detection, belonging to the scope 
of multi-view temporal fusion perception technology. Facing the industry development trend of sparse perception, 
Sparse4D builds a pure sparse fusion perception framework, which makes perception algorithms more efficient and 
accurate and simplifies perception systems. Compared with dense BEV algorithms, Sparse4D reduces the computational 
complexity, breaks the limit of computing power on the perception range, and outperforms dense BEV algorithms in 
perception effect and reasoning speed.

Another significant advantage of sparse algorithms is to cut down the cost of intelligent driving solutions by reducing 
dependence on sensors and consuming less computing power. For example, Megvii Technology mentioned that taking a 
range of measures, for example, optimizing the BEV algorithm, reducing computing power, removing HD maps, RTK and 
LiDAR, unifying the algorithm framework, and automatic annotation, it has lowered the costs of its intelligent driving 
solutions based on PETR series sparse algorithms by 20%-30%, compared with conventional solutions on the market.
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4D algorithms offer higher accuracy and make intelligent driving more reliable

2. 4D algorithms offer higher 
accuracy and make intelligent 
driving more reliable.

A s  s e e n  f r o m  t h e  s e n s o r 
configurations of OEMs, in recent 
three years ever more sensors have 
been instal led,  wi th increasing 
intell igent driving functions and 
application scenarios. Most urban 
NOA solutions are equipped with 10-
1 2  c a m e r a s ,  3 - 5  r a d a r s ,  1 2 
ultrasonic radars and 1-3 LiDARs.
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Tesla's Occupancy Network algorithm is a typical 4D algorithm

With the increasing number of sensors, ever more 
perception data are generated. How to improve the 
utilization of the data is also placed on the agenda of 
OEMs and algorithm providers. Although the algorithm 
details of companies are a little different, the general 
ideas of the current mainstream BEV Transformer 
solutions are basically the same: conversion from 2D to 
3D and then to 4D.

Temporal fusion can greatly improve the algorithm 
continuity, and the memory of obstacles can handle 
occlusion and allows for better perception the speed 
information. The memory of road signs can improve the 
driving safety and the accuracy of vehicle behavior 
prediction. The fusion of information from historical 
frames can improve the perception accuracy of the 
current object, while the fusion of information from 
future frames can verify the object perception accuracy, 
thereby enhancing the algorithm reliability and accuracy.
 
Tesla's Occupancy Network algorithm is a typical 4D 
algorithm.
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Tesla adds the height information to the vector space of 2D BEV+ temporal information output

Tesla adds the height information to the vector space 
of 2D BEV+ temporal information output by the 
original Transformer algorithm to build the 4D space 
representation form of 3D BEV + temporal information. 
The network runs every 10ms on the FSD, that is, it 
runs at 100FPS, which greatly improves the speed of 
model detection. 
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End-to-end algorithms integrating perception, planning and control enable more 
anthropomorphic intelligent driving

3. End-to-end algorithms integrating perception, planning and control enable more anthropomorphic intelligent driving.

Mainstream intelligent driving algorithms have adopted the “BEV+Transformer” architecture, and many innovative perception 
algorithms have emerged. However, rule-based algorithms still prevail among planning and control algorithms. Some OEMs face 
technical and practical challenges in both perception and planning & control systems, which are sometimes in a "split" state. In some 
complex scenarios, the perception module may fail to accurately recognize or understand the environmental information, and the 
decision module may make incorrect driving decisions due to improper handling of the perception results or algorithm limitations. 
This restricts the development of advanced intelligent driving to some extent. 

UniAD, an end-to-end intelligent driving algorithm jointly released by SenseTime, OpenDriveLab and Horizon Robotics, was rated as 
the Best Paper in CVPR2023. UniAD integrates three main tasks (perception, prediction and planning) and six sub-tasks (target 
detection, target tracking, scene mapping, trajectory prediction, grid prediction and path planning) into a unified end-to-end network 
framework based on Transformer for the first time to attain a general model of full-stack task-critical driving. Under the nuScenes real 
scene dataset, UniAD performs all tasks best in the field, especially in terms of the prediction and planning results far better the 
previous best solution.     

The basic end-to-end algorithm enables direct inputs from sensors and predictive control outputs, but it is difficult to optimize, 
because of lacking effective feature communication between network modules and effective interaction between tasks and needing 
to output results in phases. The decision-oriented perception and decision integrated design proposed by the UniAD algorithm uses 
token features for deep fusion according to the perception-prediction-decision process, so that the indicators of all tasks targeting 
decision are consistently improved. 
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Tesla adopts an approach of interactive search + evaluation model

In terms of planning and control algorithms, Tesla adopts an approach of interactive search + evaluation model to enable a comfortable 
and effective algorithm that combines conventional search algorithms with artificial intelligence:

Firstly, candidate objects are obtained according to lane lines, occupancy networks and obstacles, and then decision trees and candidate 
object sequences are generated.

The trajectory for reaching the above objects is constructed synchronously using conventional search and neural networks;

The interaction between the vehicle and other participants in the scene is predicted to form a new trajectory. After multiple evaluations, the 
final trajectory is selected. During the trajectory generation, Tesla applies conventional search algorithms and neural networks, and then 
scores the generated trajectory according to collision check, comfort analysis, the possibility of the driver taking over and the similarity 
with people, to finally decide the implementation strategy. 
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Tesla's Interactive Search Model
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Luxeed S7 bears Huawei MagLink magic suction car interface behind the front seats

XBrain, the ultimate architecture of Xpeng’s all-scenario intelligent driving, is composed of XNet 2.0, a deep vision neural network, and 
XPlanner, a planning and control module based on a neural network. XPlanner is a planning and control algorithm based on a neural 
network, with the following features:
• Rule algorithm
• Long time sequence (minute-level)
• Multi-object (multi-agent decision, gaming capability)
• Strong reasoning

The previous advanced algorithms and ADAS functional architectures were separated and consisted of many small logic planning and 
control algorithms for sub-scenes, while XPlanner has a unified planning and control algorithm architecture. XPlanner is supported by a 
foundation model and a large number of extreme driving scenes for simulation training, thus ensuring that it can cope with various 
complex situations.
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