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End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent 
driving follower

There are two types of end-to-end autonomous 
driving: global (one-stage) and segmented (two-
stage) types. The former has a clear concept, and 
much lower R&D cost than the latter, because it 
does not require any manually annotated data 
sets but relies on multimodal foundation models 
developed by Google, META, Alibaba and OpenAI. 
Standing on the shoulders of these technology 
giants, the performance of global end-to-end 
au tonomous  d r i v ing  i s  much  be t te r  t han 
segmented end-to-end autonomous driving, but at 
extremely high deployment cost.

Segmented end-to-end autonomous driving still 
uses the traditional CNN backbone network to 
extract features for perception, and adopts end-
to-end path planning. Although its performance is 
not as good as global end-to-end autonomous 
driving, it has lower deployment cost. However, 
the deployment cost of segmented end-to-end 
autonomous driving is still very high compared 
w i t h  t he  cu r ren t  ma ins t r eam t r a d i t i o n a l 
“BEV+OCC+decision tree” solution.
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UniAD

As a representative of global end-to-end autonomous driving, Waymo EMMA directly 
inputs videos without a backbone network but with a multimodal foundation model as the 
core. UniAD is a representative of segmented end-to-end autonomous driving.
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End-to-end autonomous driving researches are mainly divided into two categories

Based on whether feedback can be obtained, end-to-end autonomous driving researches are 
mainly divided into two categories: the research is conducted in simulators such as CARLA, 
and the next planned instructions can be actually performed; the research based on collected 
real data, mainly imitation learning, referring to UniAD. End-to-end autonomous driving 
currently features an open loop, so it is impossible to truly see the effects of the execution of 
one's own predicted instructions. Without feedback, the evaluation of open-loop autonomous 
driving is very limited. The two indicators commonly used in documents include L2 distance 
and collision rate.
 
L2 distance: The L2 distance between the predicted trajectory and the true trajectory is 
calculated to judge the quality of the predicted trajectory.
Collision rate: The probability of collision between the predicted trajectory and other objects is 
calculated to evaluate the safety of the predicted trajectory.

The most attractive thing about end-to-end autonomous driving is the potential for 
performance improvement. The earliest end-to-end solution is UniAD. A paper at the end of 
2022 revealed that the L2 distance was as long as 1.03 meters. It was greatly reduced to 
0.55 meters at the end of 2023 and further to 0.22 meters in late 2024. Horizon Robotics is 
one of the most active companies in the end-to-end field, and its technology development 
also shows the overall evolution of the end-to-end route. After UniAD came out, Horizon 
Robotics immediately proposed VAD whose concept is similar to that of UniAD with much 
better performance. Then, Horizon Robotics turned to global end-to-end autonomous driving. 
Its first result was HE-Driver, which had a relatively large number of parameters. The 
following Senna has a smaller number of parameters and is also one of the best-performing 
end-to-end solutions.
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Senna 
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DriveVLM

The core of some end-to-end 
systems is still BEVFormer which 
uses vehicle CAN bus information 
by defaul t ,  including expl ic i t 
i n f o r m a t i o n  r e l a t e d  t o  t h e 
vehicle's speed, acceleration and 
s t e e r i n g  a n g l e ,  e x e r t i n g  a 
s i g n i f i c a n t  i m p a c t  o n  p a t h 
p lann ing.  These end- to-end 
systems still require supervised 
t ra in ing,  so massive manual 
annotations are indispensable, 
which makes the data cost very 
high. Furthermore, since the 
concept of GPT is borrowed, why 
not use LLM directly? In this case, 
Li Auto proposed DriveVLM.

As the figure below shows, the 
pipeline of DriveVLM from Li Auto 
mainly involves design of the 
three major modules: scenario 
description, scenario analysis, 
and hierarchical planning.
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The scenario description module of DriveVLM

The scenario description module of DriveVLM is composed of environment description and key object 
recognition. Environment description focuses on common driving environments such as weather and road 
conditions. Key object recognition is to find key objects that have a greater impact on current driving decision. 
Environment description includes the following four parts: weather, time, road type, and lane line.

Differing from the traditional autonomous driving perception module that detects all objects, DriveVLM focuses 
on recognizing key objects in the current driving scenario that are most likely to affect autonomous driving 
decision, because detecting all objects will consume enormous computing power. Thanks to the pre-training of 
the massive autonomous driving data accumulated by Li Auto and the open source foundation model, VLM can 
better detect key long-tail objects, such as road debris or unusual animals, than traditional 3D object detectors.  

For each key object, DriveVLM will output its semantic category (c) and the corresponding 2D object box (b) 
respectively. Pre-training comes from the field of NLP foundation models, because NLP uses very little 
annotated data and is very expensive. Pre-training first uses massive unannotated data for training to find 
language structure features, and then takes prompts as labels to solve specific downstream tasks by fine-tuning.

DriveVLM completely abandons the traditional algorithm BEVFormer as the core but adopts large multimodal 
models. Li Auto's DriveVLM leverages Alibaba's foundation model Qwen-VL with up to 9.7 billion parameters, 
448*448 input resolution, and NVIDIA Orin for inference operations.
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How does Li Auto transform from a high-level intelligent driving follower into a leader?

How does Li Auto transform from a high-level intelligent driving follower into a leader?

At the beginning of 2023, Li Auto was still a laggard in the NOA arena. It began to devote itself to R&D 
of high-level autonomous driving in 2023, accomplished multiple NOA version upgrades in 2024, and 
launched all-scenario autonomous driving from parking space to parking space in late November 2024, 
thus becoming a leader in mass production of high-level intelligent driving (NOA).

Reviewing the development history of Li Auto's end-to-end intelligent driving, in addition to the data 
from its own hundreds of thousands of users, it also partnered with a number of partners on R&D of 
end-to-end models. DriveVLM is the result of the cooperation between Li Auto and Tsinghua University.  

In addition to DriveVLM, Li Auto also launched STR2 with Shanghai Qi Zhi Institute, Fudan University, 
etc., proposed DriveDreamer4D with GigaStudio, the Institute of Automation of Chinese Academy of 
Sciences, and unveiled MoE with Tsinghua University.

Mixture of Experts (MoE) Architecture 

In order to solve the problem of too many parameters and too much calculation in foundation models, 
Li Auto has cooperated with Tsinghua University to adopt MoE Architecture. Mixture of Experts (MoE) 
is an integrated learning method that combines multiple specialized sub-models (i.e. "experts") to form 
a complete model. Each "expert" makes contributions in the field in which it is good at. The mechanism 
that determines which "expert" participates in answering a specific question is called a "gated network". 
Each expert model can focus on solving a specific sub-problem, and the overall model can achieve 
better performance in complex tasks. MoE is suitable for processing considerable datasets and can 
effectively cope with the challenges of massive data and complex features. That’s because it can 
handle different sub-tasks in parallel, make full use of computing resources, and improve the training 
and reasoning efficiency of models.
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Mixture of Experts (MoE) Architecture 
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STR2 Path Planner

STR2 is a motion planning solution 
based on Vision Transformer (ViT) and 
MoE. It was developed by Li Auto and 
researchers from Shanghai Qi Zhi 
Research Institute, Fudan University 
and other universities and institutions.

STR2 is designed specifically for the 
autonomous driving field to improve 
generalization capabilities in complex 
and rare traffic conditions.

STR2 is an advanced motion planner 
t ha t  enab les  deep  l ea rn ing  and 
effective planning of complex traffic 
environments by combining a Vision 
Transformer (ViT) encoder and MoE 
causal transformer architecture.

The core idea of STR2 is to wield MoE 
to handle modality collapse and reward 
balance through expert routing during 
training, thereby improving the model's 
generalization capabilities in unknown 
or rare situations. 
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DriveDreamer4D World Model

In late October 2024, GigaStudio teamed up with the Institute 
of Automation of Chinese Academy of Sciences, Li Auto, 
Peking University, Technical University of Munich and other 
units to propose DriveDreamer4D.

• DriveDreamer4D uses a world model as a data engine to 
synthesize new trajectory videos (e.g., lane change) based 
on real-world driving data.

• DriveDreamer4D can also provide r ich and diverse 
perspec t ive  da ta  ( lane change,  acce le ra t ion  and 
deceleration, etc.) for driving scenarios to increase closed-
loop simulation capabilities in dynamic driving scenarios.

• The overall structure diagram is shown in the figure. The 
novel trajectory generation module (NTGM) adjusts the 
original trajectory actions, such as steering angle and speed, 
to generate new trajectories. These new trajectories provide 
a new perspective for extracting structured information (e.g., 
vehicle 3D boxes and background lane line details).

* Subsequently, based on the video generation capabilities of 
the world model and the structured information obtained by 
updating the trajectories, videos of new trajectories can be 
synthesized. Finally, the original trajectory videos are combined 
with the new trajectory videos to optimize the 4DGS model.
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