China Autonomous Driving Data Closed Loop Research Report, 2023
  • Aug.2023
  • Hard Copy
  • USD $4,400
  • Pages:318
  • Single User License
    (PDF Unprintable)       
  • USD $4,200
  • Code: FZQ010
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,300
  • Hard Copy + Single User License
  • USD $4,600
      

Data closed loop research: in the stage of Autonomous Driving 3.0, work hard on end-to-end development to control data.

At present, autonomous driving has entered the stage 3.0. Differing from the software-driven stage 2.0 based on artificial rules, in the stage 3.0, the iteration of autonomous driving functions is driven by big data and foundation models; the perception mode is that multimodal sensors jointly output the results, while the information fusion mode evolves from post-fusion to in-fusion and pre-fusion.    

As concerns data capability building, companies have shifted their focus to the efficiency and cost of the data closed loop, and can cope with more Corner Cases (extreme cases, e.g., traffic accidents, severe weathers or complex road conditions) on the premise of data compliance and data security, so as to expedite the development of user experience from "fatigue relief" to "scenario-based comfortable experience". Wherein, OEMs concentrate their efforts on improving application of autonomous driving in such scenario as city areas, urban overpasses and highways.
 
In highway scenarios, users can securely enable autonomous driving functions. The autonomous driving system provides a guide for accurate and comfortable on-ramp and off-ramp, keeps vehicles centering in lanes, allows vehicles to come around sharp corners at high speeds, balances follow and stop on congested road sections, intelligently selects the best lane, horizontally avoids and overtakes slow vehicles in lanes, and intelligently recognizes and avoids accidents and slow vehicles. For example, Pony.ai's NOA solution (see the figure below) makes a flexible response to highway and urban traffic scenarios, and performs well in such scenarios as automatic lane change, on/off-ramp, cruise control, lane centering, and obstacle avoidance.   

closed loop 1_副本.png

In urban scenarios, city NOA functions like NIO NOP+, Huawei NCA, and Xpeng XNGP have come into service, with the improving scenario generalization capabilities for vehicle functions. For example, Huawei’s intelligent driving system ADS2.0 mounted on Avatr allows the car to successfully pass through between the two trucks on a narrow urban street (see the figure below), and rivals or even outperforms humans in making decisions. 

closed loop 2_副本.png


 
In short, the autonomous driving system performs ever better in automatic lane change, obstacle avoidance and other scenarios, and lets drivers take control of vehicles less frequently. Behind the vehicle intelligence competition is the efficient flow of data in the vehicle-cloud closed loop. Examples include Baidu AI Cloud’s autonomous driving data closed loop solution that provides full-cycle autonomous driving data operation services and an autonomous driving tool chain platform to solve problems in the process of data collection, processing, and use.   

1. The stage of data-driven Autonomous Driving 3.0 starts, and companies double down on building or improving all the links of their data closed loop system. 

The essence of the Autonomous Driving 3.0 is to be driven by data for ever higher data mining efficiency and date utilization. In this stage, the scale of vehicle test data can cover more than 100 million kilometers, which poses challenges to the collection, annotation and other links in the data closed loop. In this regard, automakers raise the efficiency of data processing by way of improving the flexible collection logic of the shadow mode and simulating zero prototypes to gear up for algorithm iteration, model training and deployment.   

Let’s look at automakers’ measures to improve efficiency from the following key links of data closed loop, i.e., data collection, data annotation, and simulation test.

Data collection
  
At present, data can be collected by road collection vehicles, production vehicles, cloud simulation, and vehicle owner contribution. Wherein, the shadow mode works relatively more efficiently when collecting dynamic/static data inside and outside the vehicle. The algorithm trigger logic set by automakers is more flexible and precise. For example, Xpeng sets more than 300 trigger signals on vehicles with the ability to collect data, and the system can judge which corner case is useful at present and then uploads it. SAIC Rising Auto sets up multiple Triggered Events in cars to collect and return multimodal data after triggering these conditions, having enabled backhaul of nearly 12 million clips of data just within three months. In addition, EXCEEDDATA’s data collection system uses the cloud low-level code tool vStudio and various operators, making it easy to build trigger algorithms. The complete vehicle-cloud cooperative solution allows for one-click distribution of trigger algorithms to vehicles, without needing a complicated OTA process, delivering high algorithm iteration efficiency. EXCEEDDATA’s shadow mode is evolving to the stage 2.0, helping to build a trigger scene library and enable human-computer comparison and AB model comparison, and the edge computing assists in mining unknown abnormal scenarios for far lower cost and much higher efficiency.      

Data annotation
 
Data annotation is one of the most critical links in the autonomous driving data closed loop. At present, how to keep improving the efficient automatic annotation of collected multimodal high-value data is the focus of conventional annotation companies and data closed loop solution providers.   

To better empower automakers, conventional annotation companies are developing their own automated data annotation platforms to improve the efficiency and quality of data annotation. Meanwhile, they have also begun to partner with various intelligent computing centers, and use foundation models for ever greater capabilities of annotation platforms and lower cost of annotation.  

In DataOcean AI’s case, its self-developed autonomous driving annotation platform DOTS-AD can support multi-dimensional, all-round autonomous driving annotation tasks, with up to 8 times higher data annotation efficiency. Another example is the MindFlow SEED data service platform which drives the mass annotation of autonomous driving data via AI+RPA, increases the comprehensive labor efficiency by an average of 30% and lowers the data production cost by an average of 40%.      

In terms of driving scene recognition capabilities, the Haomo DriveGPT-based 4D Clips driving scene recognition solution built by Haomo.ai, a data closed loop solution provider, can cut down the annotation cost of a single picture to 0.5 yuan, a tenth of the current industry average cost. Haomo.ai is opening up the image frame and 4D Clips automatic driving scene recognition service to the industry. At present, quite a few annotation companies have joined hands with Haomo.ai, including Datatang, DataOcean AI, Appen, Testin and Stardust AI. The win-win cooperation between companies is bound to slash the data use cost for the industry and improve data quality.    

closed loop 3_副本.png

Simulation test
 
Cloud simulation platform construction is one of the tool chain capabilities of companies. The purchase and maintenance of simulation equipment is a cost pressure. Yet in the autonomous driving R&D process, compared with the approach using component prototypes to verify functions, virtual simulation needs fewer or zero prototypes. The higher cost performance makes simulation investment almost a must.    
 
There are several simulation forms: MiL (model-in-the-loop), SiL (software-in-the-loop), HiL (hardware-in-the-loop), DiL (driver-in-the-loop), and ViL (vehicle-in-the-loop). Companies require a different simulation form in different stages of their R&D cycle. Currently many automakers are using simulation tools to verify functions and shorten the R&D cycle and the time-to-market of new models. For example, VI-grade’s products are used by BMW, Mercedes-Benz, Audi, Ford, Honda, Toyota, SAIC, FAW, GAC and NIO among others.

closed loop 4_副本.png

2. When constructing a data closed loop ecosystem, companies quicken their pace of building "digital intelligence/data base" capabilities.

Data, algorithm, and computing power are the three cornerstones of autonomous driving technology. The volume and quality of data determine the upper limit of algorithm capabilities, and computing power is the carrier of data processing. The integration of software and hardware means the "smoothness" of adaptability between algorithms and domain controller/chip. Currently just a few companies like Tesla in the industry have built a complete intelligent ecosystem of "data + algorithm + computing power", and take 100% control of data. To have control over data, OEMs and software algorithm companies are running after them.
 
Build intelligent computing centers
 
As the initial investment in supercomputing centers is relatively high, OEMs and Tier 1 suppliers generally budget over RMB100 million for building AI computing centers. In the case of Dojo, Tesla’s supercomputer platform that was put into use in July 2023, Tesla will invest more than USD1 billion in Dojo in 2024 to facilitate training of the supercomputer and neural networks.   

Even so, automakers or technology providers with a long-term plan for autonomous driving are building their own supercomputing centers to hold stable computing resources and shorten the development cycle and the time-to-market of autonomous driving products. One example is "Fuyao", Xpeng’s autonomous driving AI intelligent computing center co-funded with Alibaba in August 2022. The center can speed up the model training of autonomous driving algorithms by 170 times, and has the scope to increase computing power by 10 to 100 times in the future.   

closed loop 5.png

"Digital intelligence/data base" capability building
 
The full life cycle of intelligent vehicles needs to be driven by data, and it is the data-based vehicle-cloud full-link capability base that some autonomous driving solution providers work hard to build. For example, ExceedData’s vehicle-cloud integrated computing architecture combines with its vehicle high-performance time-series database to build a data base for intelligent vehicles, and redefines the cost and efficiency of vehicle data intelligence, enabling an 85% reduction in the total cost. The data base solution has been well accepted by first-tier automakers including FAW, SAIC, SAIC Z-ONE, Human Horizons, Dongfeng Voyah, BAIC and Geely, and has been mass-produced and designated for more than 10 vehicle models. 

closed loop 6_副本.png


Freetech has the ability to develop, mass-produce and deliver software and hardware integrated platforms, and has built a data closed loop link of "large-scale data collection - data processing system - automated iteration". Freetech’s ODIN intelligent driving digital intelligence base supports large-scale mass production data closed loop system, and is composed of Freetech’s large-scale mass production data base and the computing power platform deployed at the National Super Computing Center. Freetech has built a complete data closed loop system that supports algorithm evolution, and can complete the iterative evolution of perception algorithms, and the closed-loop verification of planning and control algorithms. The ODIN digital intelligence base is composed of self-developed domain controller, sensor, autonomous driving algorithm, and data closed loop system as the four pillar systems, having cooperated with more than 40 auto brands on over 100 model projects.
 
3. BEV+Transformer enables end-to-end perception and decision integration.

The enhancement of autonomous driving capabilities is the result of the joint optimization of “more data + better algorithms + higher computing power”, and it is also the inevitable result of advancement of perception, decision, planning and control technologies. 

A variety of complex scenarios, especially corner cases, require higher perception and decision capabilities of autonomous driving. BEV technology enhances the perception of autonomous driving systems by providing a holistic perspective. Transformer models can be used to extract features from multimodal data, such as LiDAR point clouds, images and radar data. The end-to-end training on these data allows Transformer to automatically learn the internal structure and interrelation of these data, so as to effectively recognize and locate obstacles in environments.    

BEV+Transformer can build an end-to-end autonomous driving system to achieve high-precision perception, prediction and decision. In SenseTime’s case, based on a multimodal foundation model, it can enable data closed loops of prediction and decision. UniAD, SenseTime's perception-decision integrated end-to-end autonomous driving solution, increases the lane line prediction accuracy by 30%, and reduces the errors of motion displacement prediction by nearly 40% and the planning errors by nearly 30%. With regard to AI decision, SenseTime and Shanghai Artificial Intelligence Laboratory launched OpenDILab, a decision AI platform which can also be used in autonomous driving for planning and control.   

In addition, JueFX Technology also has the "perception-decision-data" closed-loop capability, and its competitive edge lies in the integration and flywheel effect between algorithms and data. In terms of software, JueFX’s core technology path is the fusion of computing power, that is, fuse the spatial data related to the position and attitude of the vehicle, the static data of heavy or light maps, and the sensor perception data, compute them in real time, and apply them to the perception system, positioning system, path planning system or memory mapping system of autonomous driving.  

closed loop 7_副本.png

1 Overview of Autonomous Driving Data Closed Loop 
1.1 Three Cornerstones for Development of Autonomous Driving Technology 
1.2 What Is Data Closed Loop 
1.2.1 Data Collection
1.2.1.1 Real Scene Data Collection
1.2.1.2 Simulation Scene Data Collection 
1.2.2 Data Compliance
1.2.2.1 Regulatory Requirements for Data Processing Security
1.2.2.2 Automotive Data Security Technology and Protection System
1.2.3 Automated Data Processing
1.2.4 Algorithms
1.2.4.1 AD Algorithm Trends
1.2.5 Data Annotation and Development
1.2.5.1 TOP 10 Autonomous Driving Data Annotation Providers, 2023
1.2.5.2 Examples of Automatic Annotation System - DataOcean AI
1.2.5.3 Examples of Automatic Annotation System - Tesla
1.2.5.4 3D Point Cloud Technology
1.2.5.5 3D Point Cloud Image Annotation 
1.2.5.6 2D/3D Fusion Annotation
1.2.5.7 3D Point Cloud Semantic Segmentation Annotation
1.2.5.8 3D Point Cloud Continuous Frame Annotation

2 Application of Foundation Model in Autonomous Driving Data Closed Loop
2.1 Foundation Model Based on Neural Network 
2.2 Post-fusion, Feature-level Fusion and Pre-fusion
2.3 BEV+Transformer Has Become the Mainstream Solution at Present 
2.3.1 BEV+Transformer Significantly Improves the Feature-level Fusion Effect 
2.3.2 BEV+Transformer Helps City NOA to Get Rid of Maps 
2.3.3 Light Map Data Closed Loop Solution Example 1 
2.3.3 Light Map Data Closed Loop Solution Example 2
2.3.4 BEV Is Upgraded to Network Occupation (Vision + Radar) to Be Free from LiDAR
2.3.5 Multi-sensor Fusion Route: Necessity of LiDAR
2.3.6 Software 2.0 Drives Autonomous Driving Algorithms to Head in the End-to-End Direction  
2.4 Overview of Foundation Models Enabling Autonomous Driving
2.4.1 Foundation Models Facilitate Data Mining and Automatic Annotation 
2.4.2 Foundation Model + Small Model
2.5 Foundation Model Capability Building and Tool Chain 
2.5.1 Examples of Foundation Model Capability Output – Microsoft
2.5.2 Examples of Foundation Model Capability Output – Nvidia
2.6 Overview of Foundation Model Layout in Automotive Industry
2.7 AI Foundation Model Accelerates Automotive GPT 
2.8 AI Foundation Model Accelerates Implementation of City NOA 

3 Application of Cloud Platform in Autonomous Driving Data Closed Loop 
3.1 Roles of Cloud Platform in Data Closed Loop (1)
3.2 Roles of Cloud Platform in Data Closed Loop (2)
3.3 Roles of Cloud Platform in Data Closed Loop (3) 
3.4 List of Autonomous Driving Cloud Supercomputing Centers in China
3.5 Typical: AWS Cloud Platform Data Closed Loop
3.6 Typical: Volcengine Data Closed Loop Cloud Service Platform
3.7 Typical: Alibaba Cloud Data Closed Loop

4 Typical Simulation Companies in Autonomous Driving Data Closed Loop 
4.1 The International Organization for the Standardization of Autonomous Driving Simulation
4.2 The Localization of ASAM Standards in China
4.3 Domains of ASAM Standards 
4.4 Foreign Vehicle Dynamics Benchmarking Companies
4.5 Foreign Traffic Scene Simulation Benchmarking Companies 
4.6 Foreign Virtual Scene Simulation Benchmarking Companies
4.7 Foreign Sensor Simulation Benchmarking Companies 
4.8 Foreign Hardware-in-the-Loop Simulation Benchmarking Companies
4.9 Dynamics of Autonomous Driving Simulation Platforms in China 
4.10 Typical Company: IAE 
4.10.1 Profile
4.10.2 X-IN-LOOP? Simulation Test Technology System
4.10.3 Vision
4.11 Typical Company: PanoSim
4.11.1 Profile
4.11.2 Autonomous Driving Simulation Test Platform
4.11.2 Product Composition and Function
4.11.2 Products and Features
4.11.3 Application Scenarios of xPilot
4.12 Typical Company: 51WORLD
4.12.1 Profile 
4.12.2 Simulation Platform 51Sim-One
4.12.3 Simulation Platform 51Sim-One: Cloud Simulation
4.13 Typical Company: Cognata
4.13.1 Profile
4.13.2 Overview of Autonomous Driving Simulation
4.14 Typical Company: VI-grade 
4.14.1 Profile 
4.14.2 Simulator Series
4.14.3 AutoHawk Platform
4.14.4 Simulator Third-party Software Tools/Interfaces
4.14.5 Customers
4.14.5.1 Customer Cases

5 Data Closed Loop Layout of Typical OEMs  
5.1 BYD
5.1.1 Data Closed Loop System Construction 
5.1.2 Big Data Accumulation
5.1.3 Data-driven Foundation Model R&D Route 
5.1.4 R&D of Data-driven Perception Model 
5.1.5 Multi-camera BEV Object Perception Model 
5.1.6 Transformer-based Multi-sensor Multi-task Fusion Perception  
5.1.7 Truth-value System Based on Foundation Model
5.1.8 Vehicle Computing Platform
5.1.9 R&D of Decision and Planning Foundation Models
5.2 SAIC
5.2.1 SAIC’s "157X" Technology Innovation System  
5.2.2 SAIC’s Data Closed Loop Solution 
5.2.3 Z-ONE Galaxy Intelligent Driving Full-stack Solution
5.2.4 Z-ONE Galaxy Intelligent Driving Computing Platform
5.2.5 Z-ONE Galaxy Intelligent Driving Computing Platform - Cloud-Pipe-Terminal Data Closed Loop  
5.2.6 Rising Auto/IM Motors - PP-CEM Intelligent Driving System
5.2.7 Rising Auto/IM Motors - Autonomous Driving Data Closed Loop
5.2.8 Rising Auto/IM Motors - Autonomous Driving Data Mining & Processing
5.2.9 Rising Auto’s Fully Integrated Advanced Intelligent Driving System
5.2.10 IM Motors’ D.L.P. Artificial Intelligence Model 
5.2.11 NOA Performance of IM Motors  
5.3 Changan Automobile
5.3.1 New Technology Architecture
5.3.2 New Technology Architecture – Cloud Platform
5.3.3 New Technology Architecture – Data Closed Loop
5.4 Geely
5.4.1 Xingrui Intelligent Computing Center
5.4.2 Intelligent Driving Cloud Data Factory 
5.4.3 Intelligent Driving Closed Loop System
5.4.4 ROBO Galaxy Toolchain Process Solution  
5.4.5 Data Production Modes
5.4.6 Underlying Software Abstraction of Self-developed Algorithms
5.4.7 Intelligent driving Design Based on Self-developed SOA 
5.4.8 Fully Self-developed Cockpit Operating System
5.4.9 Global Platform Operation System
5.5 Xpeng
5.5.1 Fuyao Intelligent Computing Center
5.5.2 XNet Deep Visual Neural Network
5.5.3 All-scenario Intelligent Driving Assistance System - XNGP
5.5.4 Closed Loop Data Iteration System of XNGP
5.5.5 SEPA2.0 Fuyao Architecture  
5.6 Li Auto
5.6.1 Progress in Intelligent Computing Center
5.6.2 AD MAX3.0 Algorithm Training
5.6.3 Vehicle Model Planning
5.7 Tesla
5.7.1 Progress in Dojo Supercomputer Platform  
5.7.2 Autonomous Driving Data Closed Loop System  
5.7.3 Data Engine Data Center
5.7.4 Data Annotation 
5.7.5 Iteration History of Autonomous Driving Algorithms
5.7.6 Intelligent Driving AP/EAP/FSD 
5.7.7 4D Radar

6 Data Closed Loop Layout of Typical Autonomous Driving Providers
6.1 Baidu 
6.1.1 Autonomous Driving Data Closed Loop Solution  
6.1.2 Road Data Collection Service 
6.1.3 Autonomous Driving Data Processing Compliance Service 
6.1.4 Data Annotation Service 
6.1.5 Intelligent Driving Data Management Platform
6.1.6 Simulation Test Service
6.1.7 Autonomous Driving Toolchain
6.1.8 ERNIE Bot Foundation Model 
6.2 Huawei
6.2.1 "1+3+M+N" Solution
6.2.2 Huawei Cloud ModelArts Platform 
6.2.3 "Octopus" Platform
6.2.4 ADS 2.0 Algorithm
6.2.5 Progress in ADS 2.0
6.2.6 Released the "Cloud-Edge-Terminal" Automatic Data Closed Loop System
6.2.7 Huawei Cloud Empowers Automakers 
6.3 Freetech
6.3.1 ODIN Digital Intelligence Base 
6.3.2 Data Closed Loop System 
6.3.3 Autonomous Driving Software Platform - FAS
6.3.4 Development Route of Advanced Autonomous Driving Solutions
6.3.5 Advanced Domain Controller Solution
6.3.6 Upgraded Data Storage Platform
6.4 MAXIEYE
6.4.1 Profile and Development History 
6.4.2 MonoToGo Solution
6.4.3 Data Closed Loop System 
6.4.4 MAXIPILOT? Intelligent Driving Platform Solution
6.4.5 MAXIPILOT? 1.0/2.0/3.0
6.4.6 Major Customers and Partners
6.5 Nullmax
6.5.1 Profile and Development History 
6.5.2 Self-developed Full-stack Autonomous Driving Brain - Max
6.5.3 Data Closed Loop
6.5.4 BEV-AI Architecture 
6.5.5 BEV 3D Object Detection Algorithm
6.5.6 Driving-parking Integrated Solution - MaxDrive
6.5.7 Driving-parking Integrated Low-compute Platform Solution 4.0
6.5.8 Driving-parking Integrated Mid-to-high-compute Platform Solution 4.0
6.5.9 Partners
6.6 Pony.ai
6.6.1 Progress in Unmanned Autonomous Driving 
6.6.2 Passenger Car Intelligent Driving Business 
6.6.3 Intelligent Driving Solution - Shitu
6.6.4 Shitu’s New Planning and Control Algorithm Architecture - NLPP
6.6.5 Self-developed Domain Controller - Fangzai
6.6.6 Data Closed Loop Toolchain – Cangqiong
6.7 Momenta
6.7.1 Profile
6.7.2 Core Technologies
6.7.3 Autonomous Driving Solutions
6.7.4 Data Closed Loop Automation
6.7.5 “Mapless” Intelligent Driving Algorithm Solution
6.7.6 Mpilot Pro Medium-configured Solution for Mass Production
6.7.7 Software-hardware Integration Layout
6.7.8 Partners 

7 Typical Data Closed Loop Solution Providers
7.1 Haomo.ai
7.1.1 Progress
7.1.2 MANA OASIS
7.1.3 MANA OASIS Upgrade
7.1.4 Introduction to DriveGPT 
7.1.5 DriveGPT Training
7.1.6 HPilot 3.0 & City NOH
7.1.7 Ecosystem Partners
7.2 SenseTime
7.2.1 SenseAuto - Cockpit-driving-cloud System
7.2.2 SenseAuto - Data Closed Loop Capability
7.2.3 SenseAuto - Perception-decision Integration 
7.2.4 Foundation Model R&D Capabilities 
7.2.5 SenseNova Foundation Model System 
7.2.6 General Foundation Model - "INTERN 2.5"
7.2.7 Data Filtering Engine
7.2.8 Automatic Annotation of Ultra Large Models
7.2.9 Production Process of Vehicle Small Models
7.3 EXCEEDDATA
7.3.1 Profile
7.3.2 Data Base
7.3.3 Full-stack Data-driven Capabilities
7.3.4 Vehicle-cloud Data Driven Panorama 
7.3.5 Vehicle-cloud Isomorphic Computing
7.3.6 Intelligent Driving Data Collection Tool
7.3.7 Intelligent Driving Data Transmission
7.3.8 Shadow Mode Solution
7.4 LiangDao Intelligence
7.4.1 Profile
7.4.2 Development History 
7.4.3 Products and Services (1)
7.4.4 Products and Services (2) 
7.4.5 Smart City Solutions
7.4.6 Data Closed Loop
7.4.7 Data Factory Solution
7.4.8 Data Collection Service Co-developed with ZhongOu Intelligent Technology 
7.4.9 Partners
7.5 JueFX Technology 
7.5.1 "Perception-Decision-Data" Closed Loop Capability
7.5.2 Perception Foundation Model Algorithm Architecture
7.5.3 High-precision Fusion Positioning Architecture 
7.5.4 City NOA Intelligent Driving Solution
7.5.5 Highway NOA Map & Positioning Solution for Mass Production
7.5.6 Dynamics in Cooperation 
7.6 Rhino
7.6.1 Profile 
7.6.2 Data Closed Loop System
7.7 Horizon Robotics 
7.7.1 Journey 2/3/5
7.7.2 Highlights of Journey? 5
7.7.3 BEV Time-space Fusion Architecture on Journey? 5 
7.7.4 BPU Intelligent Computing Architecture
7.7.5 Intelligent Computing Development Tools
7.7.6 AIDI? Development Cloud Infrastructure
7.7.7 Ecosystem Cooperation
7.8 Black Sesame Technologies 
7.8.1 Data Closed Loop Solution
7.8.2 BEV Framework 
7.8.3 Data Collection System
7.8.4 Automatic Annotation of 3D Data
7.8.5 Latest Cooperation Cases
7.9 Kunyi Electronics
7.9.1 Profile 
7.9.2 Products and Solutions
7.9.3 Autonomous Driving Data Processing Workstation
7.9.3 Remote Data Collection Recording and Analysis Solution 
7.9.4 Intelligent Driving Data Reinjection System
7.9.4 Road Collection and Reinjection Function  
7.9.5 Hardware-in-the-loop (HIL) Test System  
7.9.6 VGATE Series Vehicle Bus Recorder  
7.9.7 Automotive Ethernet Module
7.9.8 Controller Analysis and Calibration Software - VCAR MCD
7.9.8 Bus Simulation Analysis Software - VCAR DAS
7.9.9 Distribution of Customers
 

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla’s big pr...

Qualcomm 8295 Based Cockpit Domain Controller Dismantling Analysis Report

ResearchInChina dismantled 8295-based cockpit domain controller of an electric sedan launched in December 2023, and produced the report SA8295P Series Based Cockpit Domain Controller Analysis and Dism...

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

Automotive Memory Chip and Storage Industry Report, 2024

The global automotive memory chip market was worth USD4.76 billion in 2023, and it is expected to reach USD10.25 billion in 2028 boosted by high-level autonomous driving. The automotive storage market...

Automotive AUTOSAR Platform Research Report, 2024

AUTOSAR Platform research: the pace of spawning the domestic basic software + full-stack chip solutions quickens. In the trend towards software-defined vehicles, AUTOSAR is evolving towards a more o...

China Passenger Car Electronic Control Suspension Industry Research Report, 2024

Research on Electronic Control Suspension: The assembly volume of Air Suspension increased by 113% year-on-year in 2023, and the magic carpet suspension of independent brands achieved a breakthrough ...

Global and China Hybrid Electric Vehicle (HEV) Research Report, 2023-2024

1. In 2025, the share of plug-in/extended-range hybrid electric passenger cars by sales in China is expected to rise to 40%. In 2023, China sold 2.754 million plug-in/extended-range hybrid electric p...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号