Automotive Operating System and AIOS Integration Research Report, 2025
  • May 2025
  • Hard Copy
  • USD $4,700
  • Pages:540
  • Single User License
    (PDF Unprintable)       
  • USD $4,500
  • Code: GX018
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,800
  • Hard Copy + Single User License
  • USD $4,900
      

Research on automotive AI operating system (AIOS): from AI application and AI-driven to AI-native

Automotive Operating System and AIOS Integration Research Report, 2025, released by ResearchInChina, explains the status quo and trends of AI application in automotive operating systems (OS), and analyzes how vehicle OS and AIOS mutually empower and co-evolve.     

The relationship between vehicle OS and AIOS:
From 2023 to 2024, with the rise of central computing architecture, domain operating systems started evolving towards vehicle OS which takes on integrating the full-domain software system.
In the second half of 2024, AI foundation models started being mass-produced and introduced into vehicles, which raises new requirements for vehicle operating systems and also enables their scheduling capabilities, further facilitating the adoption of automotive AIOS.  

AIOS is an AI-driven operating system that enables operating systems with "intelligence", that is, allow the systems to independently make optimizations and decisions during task execution and scheduling. AIOS represents the pinnacle of vehicle intelligence, and is responsible for handling complex perceptual data, executing intelligent decision, and realizing human-like interaction, while vehicle OS serves as the software foundation for all vehicle functions. The deep integration of the two is not merely a functional overlay but a key force driving reshaping of underlying architecture, deep synergy in industry chain, and redefinition of competitive rules.     

1.Vehicle OS supports the implementation of AI capabilities: Beyond providing computing power and data, the SOA of vehicle OS abstracts vehicle functions into independent services through standardized interfaces, achieving hardware-software decoupling, and makes it easy to call interfaces across different software modules through atomic services, providing a stable and flexible invocation environment for AI models. Take Geely as an example:   

Geely’s customized OS, GOS, is based on an SOA development framework that encapsulates various vehicle functions as services and allows AI functions to quickly call these services for agile development and iteration, providing the foundation for the rapid deployment and continuous optimization of AI capabilities. In early 2025, Geely introduced its "Full-Domain AI" system, and upgraded its OS to AIOS, with a model layer set up for AIOS to call.

2.AI reconstructs vehicle OS: Shifting it from the traditional "function-driven" model to a smarter "intent-driven" model:

AI Agents at the application layer can leverage foundation models' semantic analysis capabilities to accurately understand users' natural language commands and even latent intentions, and automatically invoke underlying software modules to complete tasks. The "intent-driven" interaction model is used to enable vehicles to proactively understand needs and provide services, making user experience much more natural and convenient.

Foundation models at the middleware (or model) layer not only provide calling interfaces for agents but also optimize the scheduling capabilities of vehicle OS through planning. This process relies on historical data and real-time system states, and uses reinforcement learning and operations research algorithms to dynamically allocate system resources and prioritize tasks. For instance, when a user simultaneously initiates navigation planning and high-definition video playback, foundation models can predict the urgency of route calculation and the resource demands of video decoding, coordinate CPU, GPU, and NPU compute in advance to ensure both navigation response and smooth video playback, avoiding stuttering caused by resource contention in traditional scheduling algorithms.

Data at the resource layer serves as the bridge between the two. Vehicle OS is responsible for data collection and management, while AIOS handles data analysis and decision-making.

In ArcherMind’s case, its subsidiary Arraymo developed ArraymoAIOS 1.0, an on-device AI operating system which, together with the vehicle operating system FusionOS 2.0, constitutes the technical base of AIOS. Key features of this base include:
Support use of Qualcomm SA8775P to build cockpit agents, and NVIDIA Orin to build vehicle agents, each equipped with 10+ deeply optimized on-device models (DeepSeek, Llama, Baichuan, Gemma, Yi-Chat, etc.).
Introduce intelligent scheduling algorithms to monitor and analyze multi-modal task loads (text, image, audio, etc.) in real time, and dynamically adjust the strategies for allocation of resources like CPU, GPU, and memory.
Introduce the AI acceleration engine AMLightning to efficiently schedule computing units in AI chips, allowing reasoning tasks to run on the most suitable computing unit.  

AIOS 4.png 

Evolution of AIOS: From AI Application and AI-Driven to AI-Native

In the automotive sector, AI was initially integrated at the application layer of the operating system, invoked via interfaces for specific scenarios. Entering the era of AIOS, AI starts penetrating deeper into the underlying layer, from being integrated into the middleware layer for driving functions, to touching the OS kernel and underlying architecture. In the future, it will evolve into AI-native OS. 

As of April 2025, there have been three modes of AI integration in OS, corresponding to the three development phases of AIOS:
AI Application Phase: introduced as applications to serve scenarios.
AI-Driven Phase: connected at the middleware layer, utilizing components like AI Runtime and AI frameworks (models/agents/algorithm frameworks) to drive various software functions more flexibly.
AI-Native Phase: large language models (LLMs) are called as microkernel modular components, providing platform-level AI capabilities for the entire OS.

Huawei believes that the application of AI technology in terminal products typically passes through three phases: AI integration at the application layer, AI fusion at the system layer, and AI-centric new OS.

As of H1 2025, most OEMs have already deployed AI at the application layer and have begun to integrate AI components into the middleware layer. Examples include Li Auto’s Halo OS, NIO’s Sky OS, Xiaomi’s Hyper OS, and Geely’s AIOS GOS. 

AI Application Phase

At this phase, AI is integrated into the application layer of OS to be called for scenarios. OS primarily provides computing power and data interfaces to optimize and upgrade basic AI functions like navigation and voice interaction. For example, in a "vehicle assistant" scenario, when a user calls AI for car-related knowledge, AI at the application layer first analyzes the request, converts it into a command, retrieves relevant data from databases, and formulates a natural-language answer displayed on the center console screen. 


AI-Driven Phase

At this phase, AIOS extends into the middleware layer, becoming a mainstream approach for AI Agent invocation in intelligent cockpits. Upper-layer agents leverage AI components to directly call SOA atomic services via framework modules to control vehicle functions or other software features. Additionally, toolchains can be used to call multiple external tools and ecological interfaces to achieve "touchless" automation for scenarios.    

For instance, the "people search by photographing" function of Li Auto’s MindVLA requires MindVLA to successively complete such steps as object recognition, map data matching, and route planning, involving use of components like AI reasoning framework and reasoning acceleration, and invocation of external maps and location data.    

AIOS 9.png

Li Auto’s Halo OS incorporates an AI subsystem in the middleware layer, which includes not only AI Runtime but also components like AI reasoning engine and reasoning acceleration framework.  

AI-Native Phase

AI-Native refers to systems or product forms that are fundamentally driven by AI, and deeply integrate AI in design from the ground up.

An AI-Native OS is an operating system that deeply integrates AI into its underlying architecture from the beginning of design, features system-level AI capabilities, and delivers all-scenario intelligent experience and rich agent ecosystems.     

When AI and OS achieve deep integration, an AI-Native OS is formed. The system can intelligently optimize resource allocation and task scheduling according to application scenarios and demands, thus bringing a qualitative leap in overall efficiency and intelligence, rather than merely taking AI as an upper-layer application or functional module.

In Huawei’s case, its AI-Native OS has the following features:
Unified AI system base
AI-Native applications
Xiaoyi Super Agent
Open ecosystems

Underpinned by the AI system base, super apps/agents are built and rich ecosystems are created. AI-native HarmonyOS features multimodal understanding, personalized user data understanding, and privacy protection capabilities, and all-scenario perception and collaboration capabilities.  
 
In April 2025, Huawei launched HarmonySpace 5, a HarmonyOS-based cockpit which adopts the MoLA hybrid foundation model architecture. It leverages a multi-model base (including DeepSeek), led by the PanGu Models, to enable system agent and vertical agent scenario applications. The entire upper-layer applications are supported by the system-level AI capabilities of HarmonyOS 5.0.     

In ThunderSoft’s case, in 2025, AquaDrive OS has been upgraded to an AI-native OS, offering optimizations in the following directions:    

The AI middleware of AquaDrive OS includes agent perception/execution services and an agent management framework to support multi-agent interaction. It also incorporates a foundation model inference and scheduling framework, supporting connection to various cloud and on-device foundation models to achieve life-oriented multimodal recognition and environmental guidance. 

Its framework provides SOA services, and enables modular software function calls with atomized support.  

Definitions 

1 Status Quo and Trends of Automotive AIOS   
1.1 Application Background of AIOS  
Application Background of Vehicle OS in the AI Era  
Requirements for Vehicle OS in the AI Era (1) - (3)  
Overview of AI Application in Automotive OS  

1.2 AIOS Architecture 
Construction Methods of LLM OS  
AIOS Architecture: Main Components and Functions of Kernel Module (1) - (7)
AIOS Architecture: Throughput and Latency/Performance Maintenance in Parallel State  
AIOS Architecture: Agent Structure  
AIOS Architecture: Model Deployment and Task Flow  
AIOS Architecture: Definition and Characteristics of AI Runtime  
AIOS Architecture: Comparison between Different AI Runtimes  
AIOS Derived Framework: LSFS Improves File Management Efficiency  
AIOS Derived Framework: Architecture of LSFS as an Additional Layer  
AIOS Derived Framework: Implementation Modes of LSFS Functions  

1.3 Cases and Insights of Terminal AIOS in Different Industries  
Consumer-Grade AIOS Cases (1) - (2)  
Enterprise-Grade AIOS Cases (1) - (2)  
Insights from Terminal AIOS for Automotive AIOS  

1.4 AIOS Trends 
Trend 1: Vehicle OS Lays the Foundation for AIOS Implementation  
Trend 2: AIOS Fusion Path
Trend 3:  
Trend 4:  
Trend 5: AI-Native OS and Cases  

2 Overview of Automotive OS  
2.1 Definition and History   
Automotive Operating System (OS)   
Evolution of Operating Systems  
Vehicle OS: Definition  
Vehicle OS: Evolution Process  
Vehicle OS: Architecture  
Vehicle OS: Characteristics  
Vehicle OS: Development Models/Business Models  
Summary of OEMs’ Vehicle OS (1) - (8)  
Cross-Domain Scheduling of Vehicle OS: Algorithm Invocation  

2.2 Trends of Automotive OS   
Trend 1:  
Trend 2:  
Trend 3: Operating System Layout Modes of OEMs/Suppliers   
Trend 4: OEMs’ Self-Developed Vehicle OS (1) - (9)  

2.3 Classification of Automotive OS   
Classification of Automotive OS: OS in Narrow/Broad Sense  
Classification of Automotive OS: Real-Time OS and Non-Real-Time OS  
List of Real-Time Operating System Suppliers and Their Products (1) - (3)  
List of Non-Real-Time Operating System Suppliers and Their Products (1) - (2)  
Classification of Automotive OS: Microkernel, Monolithic Kernel, Hybrid Kernel  
Classification of Automotive OS: Vehicle Control and In-Vehicle OS  
Automotive OS Market Size Forecast 

2.4 Software Architecture  
Software Architecture of Intelligent Vehicles  
Software Ecosystem Framework of Intelligent Vehicles  
Kernel Is the Core of Automotive Software Architecture  

2.5 Business Models  
Types of Business Models for Automotive OS  
Business Models of Major Automotive OS Companies  
Development Trends of Automotive OS and Business Model Exploration 
Basic Automotive OS and Business Models   
Automotive RTOS and Business Models (1)  
Automotive RTOS and Business Models (2)  
Operating Systems and Business Models of Suppliers (1) - (4)  

2.6 Automotive Electronics Standard: AUTOSAR  
Introduction to AUTOSAR  
Classification of AUTOSAR  
Key Members of AUTOSAR  
Classic AUTOSAR: Architecture  
Classic AUTOSAR: Functions  
Adaptive AUTOSAR: Framework  
Comparison Between Classic AUTOSAR and Adaptive AUTOSAR  
Integration of Adaptive AUTOSAR and ROS  
Core Points of AUTOSAR  
Architecture of AUTOSAR China Working Group   
Project Cases of AUTOSAR China Working Group  
Business Models of AUTOSAR-Related Software Tool Suppliers (1) - (7)  
Vector’s AUTOSAR Solution Business Model  
EB’s AUTOSAR Solution Business Model  
Neusoft Reach’s AUTOSAR Solution Business Model  
iSOFT Infrastructure Software’s AUTOSAR Solution Business Model  
Jingwei Hirain’s AUTOSAR Solution Business Model  

2.7 Automotive Electronics Standard: OSEK  
Introduction to OSEK  
Architecture and Characteristics of OSEK

2.8 Open Organization: COVESA  
Introduction to COVESA  
Members of COVESA  
Key Achievements of COVESA  
Example of COVESA Achievements  
Primary Role of COVESA
Dynamics of COVESA

3 Basic Operating Systems  
Introduction to Basic Automotive Operating Systems
  
3.1 BlackBerry  
Development History of QNX in Automotive 
QNX Business  
QNX Products: Safety Levels  
QNX Products: Features of Real-Time Operating System 
QNX Products: Architecture of Real-Time Operating System 
QNX Products: Cockpit Software Platform Solution (SDP 8.0)  
QNX Products: Intelligent Assistance Platform  
QNX Products: Cockpit-Driving Integration Controller  
QNX Products: QNX Cloud Simulation Platform  
QNX Products: Domain Controller Basic Software Platform  
QNX OS for Safety: Product Panorama  
QNX OS for Safety: Comparison of Safety Performance 
Application of QNX in Robotics  
QNX Partners  
Dynamics of QNX  

3.2 Linux & AGL  
Members of AGL 
Linux Architecture  
RT-Linux  
Open-Source Projects of Linux Foundation AI 
AGL Application Framework: UCB   

3.3 Android  
Introduction to Android & Android Automotive OS  
Android Automotive OS Architecture (1)  
Android Automotive OS Architecture (2)  
Features of Android Automotive OS  
Android Auto Introduces AI Functions  
Impacts of Slowed Updates of Android AOSP
User Development 

3.4 Huawei  
Introduction to HarmonyOS  
Development History of HarmonyOS  
Technical Architecture of HarmonyOS  
Cooperation Models Between HarmonyOS and OEMs  
Intelligent Driving Operating System: AOS  
Intelligent Vehicle Control Operating System: VOS  
Cross-Domain Integrated Software Framework: Vehicle Stack  
iDVP Platform Upgrade
CCA 
AI Functions of HarmonyOS  
Two Implementation Modes of "Say and See" in HarmonyOS  

3.5 Alibaba  
Introduction to AliOS  
Evolution Strategy of Banma Zhixing’s Vehicle OS 
AliOS Architecture  
Analysis of AliOS Application Layer  
Integration of Alibaba’s Qianwen Model and OS: System Agent System   
AliOS Solution: AliOS Intelligent Cockpit Operating System  
AliOS Drive Intelligent Driving Operating System  
Business Model of Banma Zhixing OS  
Recent Dynamics of AliOS  

3.6 VxWorks  
Introduction to VxWorks  
Wind River Software VxWorks Microkernel Architecture (1)  
Wind River Software VxWorks Microkernel Architecture (2)  
Wind River Products: Wind River Linux and Wind River AUTOSAR Adaptive Software Platform  
Wind River Products: Helix Virtualization Platform  
New Products of Wind River RTOS  
Recent Dynamics in Automotive    

3.7 Ubuntu  
Introduction to Ubuntu  
Applications of Ubuntu  
Ubuntu’s Cooperation in Automotive 

3.8 webOS  
Development History of webOS  
webOS OSE Components and Development Roadmap  
webOS Can Be Integrated with AGL  
Recent Dynamics in Automotive 

3.9 ROS  
Introduction to ROS  
Introduction to ROS 2.0  
Iteration History of ROS 2.0  
Differences Between ROS 2 and Other Middleware  
ROS 2.0 Architecture  
ROS Application Cases

4 Hypervisor
4.1 Introduction to Hypervisor  
4.2 Comparison between Major Hypervisors  
4.3 Status Quo of Hypervisor Industry  
4.3 Status Quo of Hypervisor Industry: China    
4.3 Status Quo of Hypervisor Industry: Global   
4.4 Global Automotive Hypervisor Market Outlook  
4.5 Business Models of Automotive Hypervisor Management System   
4.5 Hypervisor Business Models (1) - (4)  
4.6 QNX Hypervisor  
Profile 
Architecture  
Solutions  
4.7 ACRN  
Profile   
Components  
4.8 COQOS Hypervisor  
COQOS Hypervisor  
COQOS Hypervisor SDK 9.5  
Mixed VIRTIO / Non-VIRTIO Architecture  
"Next Gen COQOS" Heterogeneous Cores  
4.9 PikeOS  
PikeOS  
4.10 EB Corbos Hypervisor  
EB Corbos Hypervisor  
4.11 Harman Device Virtualization  
Harman Device Virtualization  
4.12 VOSYSmonitor  
VOSYSmonitor  
4.13 Zlingsmart  
RAITE Hypervisor: System Design  
RAITE Hypervisor: Intelligent Cockpit Solution  

5 Generalized Automotive OSs and Companies 
5.1 Neusoft Reach  
Introduction to NeuSAR  
Divide AIOS into Three Stages  
Deployment of AI in Vehicle Intelligent OS  
Four Layers of NeuSAR OS Architecture  
NeuSAR SF (Service Framework) Middleware  
NeuSAR AI Framework Middleware Products  
NeuSAR Copilot Facilitates Efficient AUTOSAR Development  
NeuSAR OS Completes DeepSeek Adaptation  
NeuSAR aCore  
Upgrades to AUTOSAR AP Products  
NeuSAR cCore  
Lightweight AUTOSAR CP Products
Collaboration with Infineon  

5.2 ThunderSoft  
AquaDrive OS Vehicle OS  
Integration of Rubik Foundation Model with OS  
AquaDrive OS Upgraded to AIOS  
How AquaDrive OS Supports AI Function Implementation  
How AquaDrive OS Supports AI Function Implementation: Cases 

5.3 ArcherMind  
Arraymo AIOS Base  
Cross-Domain Vehicle OS: FusionOS 1.0  
Cross-Domain Vehicle OS: FusionOS 2.0  
Recent Dynamics  

5.4 Kernelsoft  
AI-Oriented Operating System Solutions  
Real-Time Operating System  
Linux  
Operating System Security   

5.5 Baidu  
AI-Native Operating System: DuerOS X  
AI-Native Operating System: Architecture  
Integrated Vehicle OS Supply  

5.6 iSOFT Infrastructure Software   
AUTOSAR CP+AP Integrated Solutions (1)  
AUTOSAR CP+AP Integrated Solutions (2)  
CP Products  
Vehicle OS Layout  
Operating System Architecture  
Vehicle Control OS: Open-Source EasyXMen  
Intelligent Driving OS: EasyAda  

5.7 ZTE GoldenOS  
Microkernel and Macrokernel Technical Architecture  
Vehicle Control OS Solution   
Intelligent Cockpit OS Solution  
Intelligent Driving OS Solution: Dual-Kernel Architecture  
Intelligent Driving OS Solution: Application Scenarios  
Intelligent Driving OS Solution: Evolution  
Intelligent Driving OS Solution: Chip Adaptation  
Dynamics in Neusoft Reach + ZTE + SemiDrive Cooperation 

5.8 AICC 
Product System  
ICVOS: Intelligent Connected Vehicle OS  
ICVOS: Software Architecture  
ICVOS: Development Architecture  
ICVOS: SDK Architecture  
ICVOS: Platform-Based, Connected, Scalable  
ICVOS: Vehicle-Cloud Cooperation   
ICVOS: Information Security Foundation Platform  
ICVOS: New Architecture for Autonomous Driving Domain  
ICVOS: Cases of Software Architecture Co-development with OEMs (1) - (4)  

5.9 NVIDIA DRIVE OS  
Introduction to DRIVE OS  
DRIVE OS SDK Architecture  

5.10 EB  
Tresos Real-Time Operating System  
Tresos AutoCore Architecture  
EB’s J5-Based Intelligent Driving Domain OS  
EB’s Virtualization Development Technology  

5.11 Other OS Vendors  
STEP’s Intelligent Driving OS Supports LLM and End-to-End Algorithm Deployment  
iHUATEK Uses Large Vision Models to Build Vehicle OS   
Freetech’s SOA Structure Is Connected to Foundation Models  
Zlingsmart’s "RAITE OS" Microkernel OS  
RT-Thread’s "Chenxuan" Vehicle Fusion Software Platform (RTOS)  
Red Hat

6 Operating Systems of Chinese OEMs 
6.1 Li Auto  
Vehicle OS: Evolution  
Vehicle OS: Architecture  
Vehicle OS: Components and Features  
Vehicle OS: Components (1) - Communication Middleware and Its Features  
Vehicle OS: Components (2) - Vehicle Control OS and Its Features  
Vehicle OS: Components (3) - Autonomous Driving OS and Its Features  
Vehicle OS: Components (3) - Subsystems of Intelligent Driving OS  
Vehicle OS: Components (4) - Virtualization Engine and Its Features  
Vehicle OS: Components (5) - Information Security  
Vehicle OS: Components (5) - Information Security Features  
Vehicle OS: Components (5) - Information Security Scenarios  
Vehicle OS: Innovative Scenario – Cross-Domain Sensor Sharing  
Halo OS Application Advantage 1:  
Halo OS Application Advantage 2: Achieving Cross-Domain Scheduling  
Halo OS Application Advantage 3:   

6.2 NIO  
Development History of SkyOS 
SkyOS Architecture (1): Functional Features of Different Components  
SkyOS Architecture (2): SkyOS-M Core Based On seL4  
SkyOS Architecture (2): SkyOS-M Core Based On seL4  
SkyOS Architecture (2): SkyOS-M Development History and Challenges  
SkyOS Architecture (2): SkyOS-M Micro-Perception Self-Recovery Function  
SkyOS Architecture (3): SkyOS-R Performance Under Different Loads  
SkyOS Architecture (4): Middleware  
SkyOS Architecture (4): Middleware  
SkyOS Architecture (5): Data Closed Loop 
How SkyOS Integrates AI and Achieves Cockpit-Driving Integration   
Use of AI Foundation Models Requires Computing Power Scheduling of Vehicle OS 
SkyOS Application Cases: Surround-View Display   
SkyOS Application Cases: Valet Battery Swap Service (1)  
SkyOS Application Cases: Valet Battery Swap Service (2)  
SkyOS Application Cases: Valet Battery Swap Service (3)  
SkyOS Application Cases: Valet Battery Swap Service (4)  
SkyOS Application Cases: Valet Battery Swap Service (5)  
SkyOS Application Cases: Valet Battery Swap Service (6)  
SkyOS Application Cases: Valet Battery Swap Service (7)  
SkyOS Application Cases: Valet Battery Swap Service (8)  
SkyOS Application Cases: Data Security/4D Comfort Pilot/High-Spec Hardware  
SkyOS and Cedar Digital Architecture (1)  
SkyOS and Cedar Digital Architecture (2)  
SkyOS and Cedar Digital Architecture (3)  
SkyOS and Cedar Digital Architecture (4)  
SkyOS and Cedar Digital Architecture (5)  
SkyOS and Cedar Digital Architecture (6)  
SkyOS and Cedar Digital Architecture (7)  
SkyOS and Cedar Digital Architecture (8)  
Vehicle OS Scheduling Algorithm  
Chip Adaptation  

6.3 XPeng  
Vehicle OS Integration Accelerates
Vision for Integration of OS and AI Foundation Model (1)
Vision for Integration of OS and AI Foundation Model (2)   
Tianji AIOS  

6.4 Xiaomi  
AIOS-Driven Direction  
Introduction to HyperOS and Its Development History (1)
Introduction to HyperOS and Its Development History (2)    
HyperOS Architecture Design (1)  
HyperOS Architecture Design (2)  
HyperOS Architecture Design (3)  
HyperOS Architecture Design (4)  
HyperOS Architecture Design (5)  
Vehicle OS Communication Technology Under SOA (1)
Vehicle OS Communication Technology Under SOA (2) 
Vela Open Source  
Vela Technical Advantages (1) 
Vela Technical Advantages (2)  
Vela Cooperation Ecosystem  

6.5 Leapmotor  
Vehicle OS Architecture  
Vehicle Fusion Architecture  
Vehicle OS Multi-Task Scheduling Method  

6.6 Geely 
Upgrade AIOS Operating System  
Full-Domain AI System  
SOA-Based OS: GeelyOS (1)  
SOA-Based OS: GeelyOS (2)  
SOA-Based OS: GeelyOS (3)  
Intelligent Cockpit Solution: Flyme Auto IVI System  
Meizu Flyme AI OS Can Integrate with IVI System  
Advantages and Disadvantages of Flyme OS   
Zeekr’s Intelligent Cockpit Solution: ZEEKR AI OS (1) 
Zeekr’s Intelligent Cockpit Solution: ZEEKR AI OS (2)   

6.7 SAIC 
IM AIOS Enables Agent Implementation  
IM AIOS Supports Multi-Agent Processes  
Z-ONE’s AI Service Architecture  
Z-ONE’s AI Service Architecture Is Built with 4 Layers   
Z-ONE’s AIOS and Hardware Cooperation     
Z-ONE’s AIOS Achieves Device-Cloud Integration Architecture (1) 
Z-ONE’s AIOS Achieves Device-Cloud Integration Architecture (2)  
Z-ONE’s Agent Cooperation Process   

6.8 Great Wall Motor
Cockpit OS: Coffee OS 3 Architecture  
Features of AI OS 
How Coffee OS Coordinates Agent Scenarios  
Vehicle OS and Central Computing Architecture (1)  
Vehicle OS and Central Computing Architecture (2)  

6.9 FAW  
FAW.OS Architecture of FAW Hongqi (1)
FAW.OS Architecture of FAW Hongqi (2) 
FAW AIOS Integrates Vehicle Foundation Models  
Features of FAW.OS 

6.10 GAC  
Vehicle OS Architecture  
Vehicle OS Application  

6.11 Changan 
Cockpit OS: Tianyu OS  
RTDriveOS Architecture  
Integrating AI into SOA Layer  
SDA: RTDriveOS Intelligent Driving OS  
SDA: L4 Layer – OS Layer  
SDA: L4 Layer – OS Layer  

6.12 Dongfeng  
Vehicle OS Architecture (1)  
Vehicle OS Architecture (2) 
OS Development Process  

6.13 BYD OS  
BYD OS Architecture  
BYD OS Features  

6.14 Chery OS  
Chery OS Introduction  
Chery OS Application  

6.15 BAIC’s AIOS Vision  

7 Operating Systems of Foreign OEMs 
7.1 From Customized Automotive OS To Vehicle OS  
7.2 Comparison between Foreign Automotive OSs (1)
7.2 Comparison between Foreign Automotive OSs (2)  
7.2 Comparison between Foreign Automotive OSs (3)  
7.3 BMW  
Mass-Production EEA: Software System Evolution  
iDrive Enables Agent Application  

7.4 Mercedes-Benz  
MB OS Functions 
MB OS Architecture (1) 
MB OS Architecture (2) 
MB OS Architecture (3) 
MB OS Architecture (4) 
Recent Development of MB OS 

7.5 Volkswagen  
Introduction to VW.OS 
VW.OS Development History (1) 
VW.OS Development History (2) 
VW.OS Development History (3) 
VW.OS Features (1) 
VW.OS Features (2) 
VW.OS Architecture  

7.6 Toyota  
Introduction to Arene OS (1)
Introduction to Arene OS (2)
Arene OS Ecosystem Resources  
Arene OS Functions (1) 
Arene OS Functions (2) 
Cooperation With NVIDIA on OS   

7.7 Honda  
ASIMO Operating System
 

Auto Shanghai 2025 Summary Report

The post-show summary report of 2025 Shanghai Auto Show,  which mainly includes three parts: the exhibition introduction, OEM, and suppliers. Among them, OEM includes the introduction of models a...

Automotive Operating System and AIOS Integration Research Report, 2025

Research on automotive AI operating system (AIOS): from AI application and AI-driven to AI-native Automotive Operating System and AIOS Integration Research Report, 2025, released by ResearchInChina, ...

Software-Defined Vehicles in 2025: OEM Software Development and Supply Chain Deployment Strategy Research Report

SDV Research: OEM software development and supply chain deployment strategies from 48 dimensions The overall framework of software-defined vehicles: (1) Application software layer: cockpit software, ...

Research Report on Automotive Memory Chip Industry and Its Impact on Foundation Models, 2025

Research on automotive memory chips: driven by foundation models, performance requirements and costs of automotive memory chips are greatly improved. From 2D+CNN small models to BEV+Transformer found...

48V Low-voltage Power Distribution Network (PDN) Architecture and Supply Chain Panorama Research Report, 2025

For a long time, the 48V low-voltage PDN architecture has been dominated by 48V mild hybrids. The electrical topology of 48V mild hybrids is relatively outdated, and Chinese OEMs have not given it suf...

Research Report on Overseas Cockpit Configuration and Supply Chain of Key Models, 2025

Overseas Cockpit Research: Tariffs stir up the global automotive market, and intelligent cockpits promote automobile exports ResearchInChina has released the Research Report on Overseas Cockpit Co...

Automotive Display, Center Console and Cluster Industry Report, 2025

In addition to cockpit interaction, automotive display is another important carrier of the intelligent cockpit. In recent years, the intelligence level of cockpits has continued to improve, and automo...

Vehicle Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2025

Functional safety research: under the "equal rights for intelligent driving", safety of the intended functionality (SOTIF) design is crucial As Chinese new energy vehicle manufacturers propose "Equal...

Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025

AI-Defined Vehicle Report: How AI Reshapes Vehicle Intelligence? Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025, released by ResearchInChina, studies, analyzes, and summarizes the c...

Automotive Digital Key (UWB, NearLink, and BLE 6.0) Industry Trend Report, 2025

Digital key research: which will dominate digital keys, growing UWB, emerging NearLink or promising Bluetooth 6.0?ResearchInChina has analyzed and predicted the digital key market, communication techn...

Integrated Battery (CTP, CTB, CTC, and CTV) and Battery Innovation Technology Report, 2025

Power battery research: 17 vehicle models use integrated batteries, and 34 battery innovation technologies are released ResearchInChina released Integrated Battery (CTP, CTB, CTC, and CTV)and Battery...

AI/AR Glasses Industry Research Report, 2025

ResearchInChina released the " AI/AR Glasses Industry Research Report, 2025", which deeply explores the field of AI smart glasses, sorts out product R&D and ecological layout of leading domestic a...

Global and China Passenger Car T-Box Market Report 2025

T-Box Research: T-Box will achieve functional upgrades given the demand from CVIS and end-to-end autonomous driving ResearchInChina released the "Global and China Passenger Car T-Box Market Report 20...

Automotive Microcontroller Unit (MCU) Industry Report, 2025

Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic produc...

Automotive LiDAR Industry Report, 2024-2025

In early 2025, BYD's "Eye of God" Intelligent Driving and Changan Automobile's Tianshu Intelligent Driving sparked a wave of mass intelligent driving, making the democratization of intelligent driving...

Software-Defined Vehicles in 2025: SOA and Middleware Industry Research Report

Research on automotive SOA and middleware: Development towards global SOA, cross-domain communication middleware, AI middleware, etc. With the implementation of centrally integrated EEAs, OEM softwar...

Global and Chinese OEMs’ Modular and Common Technology Platform Research Report, 2025

Modular platforms and common technology platforms of OEMs are at the core of current technological innovation in automotive industry, aiming to enhance R&D efficiency, reduce costs, and accelerate...

Research Report on the Application of AI in Automotive Cockpits, 2025

Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution" From the early 2000s, when voice recognition and facial monitoring functions were first ...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号