Next-Generation Embodied AI Robot Communication Network Topology and Chip Industry Report, 2026
  • Jan.2026
  • Hard Copy
  • USD $4,400
  • Pages:300
  • Single User License
    (PDF Unprintable)       
  • USD $4,200
  • Code: WH007
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,300
  • Hard Copy + Single User License
  • USD $4,600
      

AI Robot Communication Network and Chip Research: Six Evolution Trends and Chip Transformation

Embodied AI robots, namely the new generation of AI robots integrating large AI models and physical entities, are undergoing a leap from "computational intelligence" to "physical intelligence". If large models are the "brain" of robots, then communication networks are their "nervous system". An embodied AI robot is a highly complex distributed system. Its "brain" needs to process massive heterogeneous data from dozens of sensors across its body in milliseconds and issue microsecond-level synchronous commands to actuators. 

At the critical node year 2026, ResearchInChina has observed that the internal and external communication architectures of robots are facing unprecedented restructuring. Traditional industrial robot communication architectures have approached physical limits. From the dimension reduction strike of EtherCAT on CAN bus, to the physical transformation of zonal architecture, and then to the breakthrough of new protocols such as NearLink, the communication chip and module market is ushering in a boom period.    

The Next-Generation Embodied AI Robot Communication Network Topology and Chip Industry Report, 2026 conducts in-depth research on the industry chain of communication architecture of embodied AI robots. It covers 11 robot manufacturers, 12 Chinese communication module vendors and 13 foreign communication module vendors, and reveals six key communication trends supporting the next-generation embodied AI agents.   

Trend 1: In Market Boom and Chip Specialization, Communication Modules Will Witness A Nearly RMB10 Billion Increment.

In the run-up to mass production of embodied AI robots, the value of communication links is undergoing a structural restructuring from "general industrial components" to "specialized core components". According to the latest estimates by ResearchInChina, the demand for communication modules and specialized chips in this market segment will break away from the linear growth track and enter an exponential growth period.   

In particular, the EtherCAT Slave Controller (ESC) is emerging as the core incremental driver of this growth. Differing from traditional industrial automation, a humanoid robot has more than 40 joint degrees of freedom, placing a very big demand on the integration and real-time performance of communication nodes. 

As shown in the table below, the embodied AI robot dedicated communication market is expected to expand rapidly from USD42 million in 2026 to around USD300 million in 2030. 

In addition, FPGA chips are gaining increasing strategic importance in communication links, gradually forming a "FPGA + MCU" heterogeneous collaborative architecture. With its unique parallel processing capability and nanosecond-level low-latency characteristics, FPGAs (such as the Altera Agilex series) are widely used in high-bandwidth multi-sensor fusion, hard real-time industrial bus protocol conversion, and complex motor control loops.

Meanwhile, the market demand for specialized PHY chips (Physical Layer chips) is also surging. Faced with the extremely limited space and heat dissipation challenges inside robot joints, leading vendors represented by Motorcomm and Renesas Electronics are accelerating the launch of Gigabit/2.5G Ethernet PHY chips customized for embodied AI. 

These chips are reshaping the physical layer standard of robot internal communication by integrating TSN (Time-Sensitive Networking) clock synchronization features, ultra-low power consumption design, and Wafer-Level Chip Scale Packaging (WLCSP).

Trend 2: Penetration Rate of EtherCAT Solution for Internal Communication Protocol Will Increase Year by Year.

For a long time, robot internal communication has presented a "fragmented" situation where multiple protocols such as USB, CAN, and RS485 coexist. However, with more degrees of freedom of embodied AI agents (usually more than 40) and higher motion control accuracy requirements, the bottlenecks of traditional CAN bus in bandwidth and real-time performance have been fully exposed.  

The research by ResearchInChina shows that Ethernet evolving towards automotive Ethernet, especially the EtherCAT protocol, is expected to become a better solution for internal communication integration. EtherCAT is developed by Germany's Beckhoff, and now there have been local companies such as Triductor Technology and HPMicro releasing robot-specific ESC chips authorized by Beckhoff for mass production.   

Compared with the "store-and-forward" mechanism of traditional Ethernet, EtherCAT adopts a unique "Processing on the fly" technology. Data frames "fly through" each slave node like high-speed trains, and slave stations can instantly read commands and insert feedback data in nanoseconds without caching. This mechanism enables the EtherCAT system to maintain microsecond-level communication cycles and less than 1 microsecond jitter even when connecting dozens of joints.

In the bipedal walking and balance control of humanoid robots, microsecond-level synchronization of multiple joints is crucial. The Distributed Clocks (DC) technology of EtherCAT can ensure that the synchronization error of all axes is less than 100 nanoseconds, perfectly meeting the requirements for highly dynamic motion control. At present, leading manufacturers including AgiBot, Unitree Robotics, and UBTECH have widely deployed EtherCAT or customized Ethernet-based buses in their flagship products.   

Trend 3: Reshaping of Network Topology Leads to A Transition from Distribution to Zonal Centralization.

With the surge in the number of sensors (such as tactile skin and multi-view vision), the traditional point-to-point wiring mode leads to bulky wiring harnesses inside robots, which not only increases weight but also reduces reliability.

Drawing on the evolution of intelligent vehicle E/E architecture, embodied AI robots are accelerating the transformation to "zonal architecture".

Models represented by Tesla Optimus Gen3 and Figure 03 may adopt a Zonal Control Unit (ZCU) design similar to that of automobiles. Sensors and actuators first connect to nearby ZCUs, and then link to the central computing unit via a high-speed Ethernet backbone network. According to measured data from the automotive industry, this design not only significantly reduces the length and weight of wiring harnesses (expected to reduce by 16%-30%) but also lowers assembly difficulty.

Under this trend, the importance of high-speed serial communication technology (SerDes) and TSN (Time-Sensitive Networking) is increasingly prominent. More forward-looking technologies such as the TS-PON all-fiber industrial optical bus proposed by Poncan Semiconductor utilize optical fibers featuring anti-interference, low latency (<10μs) and high bandwidth (above 10Gbps), allowing a single optical fiber to undertake all electrical bus services. It is expected to be put into pilot applications in high-end robot scenarios in the future.    
 
Trend 4: In End Communication Integration, I3C Protocol Is Becoming the Key Technology to Solve Intra-Board Interconnection in Dexterous Hands.

Dexterous hand is the most complex end effector of an embodied AI robot, requiring the integration of dozens of sensors and motors in an extremely small space. Traditional CAN or UART interfaces require independent transceivers and crystal oscillators, occupying large PCB area and complicating wiring.

The I3C (Improved Inter Integrated Circuit) protocol is emerging as the key technology to solve the "last inch" communication problem of dexterous hands.

Compared with the traditional I2C, I3C supports a transmission rate of up to 12.5Mbps (push-pull mode), and In-Band Interrupt (IBI), allowing sensors to actively report emergency data (such as tactile mutations) without additional interrupt lines.

Dexterous hand solutions based on I3C launched by vendors such as NXP show that only two lines are needed to realize communication between the main controller and multiple finger joints. No external PHY chip is required when the main controller integrates an I3C controller, saving a lot of BOM costs and wiring space. Its characteristics of high integration, low power consumption, and hot-swappable support make it an ideal option for high-density tactile sensor arrays and micro-joint control.

Trend 5: For Software-Hardware Integrated "Data Bus", How DDS and ROS 2 Build a Decentralized Nerve Center? 

In the era of software-defined robots, communication is not only the transmission of bits but also the distribution of data. ROS 2 and its underlying DDS (Data Distribution Service) as the default underlying communication middleware constitute the "intelligent center" of robots.

DDS adopts a "data-centric" publish-subscribe model, eliminating centralized message brokers and removing single point of failure risks. More importantly, DDS provides extremely rich QoS (Quality of Service) policies, such as reliability, durability, and deadline. This means developers can configure "high-reliability, low-latency" policies for joint control commands, and "best-effort" policies for video streams, thereby realizing efficient scheduling of heterogeneous data in the same network.

Unitree Robotics' G1 robot is a typical representative in this trend. Its internal DDS middleware realizes the decoupling and efficient coordination of motion control, perception, and decision modules, and is even compatible with computing power expansion of external PCs.

Trend 6: Synergy between 5G-A and NearLink Technology Supports Cloud-Edge-Terminal High-Bandwidth Real-Time Interaction for Robots. 

Embodied AI agents not only need a robust "internal nervous system" but also an agile "external nervous system" to realize cloud-edge-terminal collaboration. Cellular networks (5G-A) and short-range communications (Wi-Fi/NearLink) will form a long-term complementary coexistence pattern rather than simple substitution.  

With 10Gbps downlink rate, millisecond-level latency, and wide-area seamless roaming capability, 5G-A (5.5G) is a must-have option for robots to access the "cloud brain" in mobile scenarios such as outdoor inspections and industrial parks. The Kuavo robot case UBTECH cooperates with China Mobile proves that 5G-A can support high-precision collaboration of multi-robot groups and real-time ultra-high-definition video backhaul.   

In the field of short-range communication, China's independently developed NearLink technology shows great potential to replace Wi-Fi and Bluetooth. The NearLink SLB mode features microsecond-level air interface latency (20μs) and nanosecond-level synchronization accuracy, and supports concurrent connections of up to 4096 nodes. This enables NearLink to be competent for external communication, but also at the joint connections of non-metallic skins, it is even expected to try wirelessly replacing some signal cables to explore the solution to the sore point of mechanical wear. At present, among Chiense companies, Triductor Technology has launched NearLink products targeting embodied AI robots. 

1 Embodied AI Robot Communication Network Topology
1.1 Overview of Embodied AI Robot Communication Networks
Overview of Embodied AI Robot Communication Network Modules
Overview of Embodied AI Robot Communication Networks
Multi-modal Data for Internal Communication of Embodied AI Robots
EtherCAT Network Topology of Humanoid Robots
Requirements of Embodied AI Robots for Internal Communication Transmission (1)
Requirements of Embodied AI Robots for Internal Communication Transmission (2)
Ethernet Is Expected to Become the Unified Standard for Communication Protocols

1.2 Overview of EtherCAT Communication Network Topology for Embodied AI Robots
Overview of EtherCAT
EtherCAT "Fly-by" Processing Mechanism
EtherCAT Station State Machine Management Mechanism
EtherCAT Time Synchronization Technology
Application of EtherCAT High-precision Synchronization Mechanism in Embodied AI
EtherCAT Operation Principle
Implementation Mode of EtherCAT Slave Station System
Adaptability of EtherCAT to Embodied AI Robots
Comparison Between EtherCAT and CAN Bus
Advantages and Trends of EtherCAT Communication Protocol
Defects and Challenges of EtherCAT Communication Protocol
Next-generation EtherCAT Technology

1.3 EtherCAT Communication Network Technology Stack
ROS 2 Communication Architecture Technology Stack
New Features of ROS 2
Core Components of ROS 2 System
Communication Architecture Design of ROS 2
ROS 2-Based Communication Architecture of Embodied AI Robots 
Example of Data Processing Flow Based on ROS 2 System Architecture
ROS 2 Robot Endpoint Communication Solution
Partial Applications of ROS 2 in Embodied AI Robots

1.4 EtherCAT Communication Network Middleware
Overview of DDS
Core Models and Advantages of DDS
QoS Policies of DDS

1.5 Application of FPGA Chips and PHY Chips in Embodied AI Robot Communication 
Overview of Ethernet Physical Layer Chips (PHY)
Application of Ethernet Physical Layer Chips (PHY)
Core Advantages of FPGA in Robot Control and Communication Systems
Practical Application Cases of FPGA in Robotics 
Application of FPGA in Communication of Tesla Optimus Gen 2

1.6 Industry Chain and Scale of Communication Chips for Embodied AI Robots
Underlying Hardware Industry Chain of Internal Communication Units for Embodied AI Robots
Industry Chain Structure of External Communication for Embodied AI Robots
Internal Communication Cost of Embodied AI Robots
Global Embodied AI Robot Communication Module Market Size, 2026E-2030E
China Embodied AI Robot Communication Module Market Size, 2026E-2030E

2 Application of Communication in Various Scenarios of Embodied AI Robots
2.1 Sensor Communication Architecture
Types of Sensors Equipped on Embodied AI Robots
Robot CMOS Image Sensor Communication
Robot LiDAR/Radar Communication
Microphone Network Communication of Embodied AI Robots
EtherCAT-based Machine Vision System Integration Technology
EtherCAT-based Machine Vision System Framework

2.2 Motion Control and Actuators
Motion Control Communication Network Module and Application of Embodied AI Robots
Communication Interface Design of Embodied AI Robots
Hardware Architecture Analysis of Actuator and EtherCAT Communication Network for Embodied AI Robots
EtherCAT Has Significant Advantages in Robot Motion Control

2.3 Dexterous Hand Communication Architecture
Types and Considerations of Dexterous Hand Communication
Dexterous Hand Communication Architecture
Dexterous Hand Palm Board EtherCAT Slave Station System
Challenges of Dexterous Hand Distributed Communication Architecture
Differences Between I3C and I2C and Their Advantages in Embodied AI
Dexterous Hand Distributed Communication Architecture Based on I3C Bus

2.4 External Communication Architecture
External Communication Technology Is the Foundation of Embodied AI Robots
Comparison Between Wireless and Wired Communication of Embodied AI Robots
External Communication Is Led by Wireless Communication
Application of Cellular Network in External Communication of Embodied AI Robots
Application of Wi-Fi and Other Local Area Networks in External Communication of Embodied AI Robots
Introduction to NearLink Technology
Application of NearLink in External Communication of Embodied AI Robots

2.5 Development Trends of Embodied AI Robot Communication
Current Development Requirements for Precision and Latency in Humanoid Robot Motion Control
TS-PON New-generation All-Fiber Industrial Optical Bus Technology
TS-PON All-Optical Network Chip Robot Communication Architecture
Paradigm Shift of Internal Control Network from "Distributed Functional Control" to "Zonal Centralized Control"
Application of Time-sensitive Networking (TSN) Ethernet
Architectural Innovation of TSN in Robot Communication
Application Advantages of 5G-Advanced (5G-A) in Industrial Scenarios of Embodied AI Robots
Advantages of NearLink Technology in Embodied AI Robots
In-depth Optimization of DDS Middleware and ROS 2
Migration of New-generation High-speed Serial Communication Technology to Robots

3 Communication Network Deployment Schemes of Major Embodied AI Robot Body Manufacturers
3.1 Unitree Technology Communication Architecture
Unitree Humanoid Robot G1
Software System Architecture of Unitree G1
Dual-SoC Communication Architecture of Unitree G1
Communication Parameters of Main Control Chip
Communication Parameters of Joint Control Chip
Internal Network Architecture and Topology
Internal Bus and Actuator Communication
Sensor Communication Path
Physical Communication Interface Matrix (G1-Edu)
Overview of Unitree G1 Communication Interfaces
GPIO / Serial Bus Expansion Interfaces
Core Technical Feature - Real-time Data Distribution Based on DDS
Unitree Quadruped Robot Go2
Main Control Board Module Layout of Unitree Go2
Overview of Main Control Board Communication Module of Unitree Go2
Overview of Wireless Communication Module of Unitree Go2
Detailed Composition of Wireless Communication Module of Unitree Go2
Parameters and Functions of Wireless Communication Module of Unitree Go2
Communication Interface of Unitree Go2
Multi-protocol Communication of Unitree Go2
Core Communication Technologies of Unitree Go2 (1)
Core Communication Technologies of Unitree Go2 (2)

3.2 AgiBot Communication Architecture
Communication Architecture of AgiBot Lingxi X1
Whole-machine Wiring of AgiBot Lingxi X1 
Whole-machine Circuitry of AgiBot Lingxi X1
Core Communication Module DCU
Execution Layer Communication Architecture
Communication Parameters of Joint Motors

3.3 KUAVO Robot Communication Architecture
Application of 5G-A Technology in KUAVO Robots
Lower Computer Communication Configuration of KUAVO 5 MAX
Upper Computer Parameter Configuration of KUAVO 5 MAX
Dexterous Hand and Sensor Communication Configuration of KUAVO 5 MAX
New-generation Leju KUAVO Robot Adopts NVIDIA Jetson Thor Communication Configuration

3.4 UBTECH Robot Communication Architecture
Communication Parameters of UBTECH Robots 
Actuator Communication Network Architecture of UBTECH Robots
Sensor Communication Network Architecture of UBTECH Robots
UBTECH Robot BrainNet 2.0 
External Communication Architecture of UBTECH Robots
Application of UWB Positioning Technology in UBTECH Robots

3.5 DEEP Robotics Robot Communication Architecture 
Joint Communication Configuration of DEEP Robotics J Series Robots
Configuration Parameters of DEEP Robotics Jueying X20 Robot
Configuration Parameters of DEEP Robotics Jueying Lite3 Robot
External Communication Application of DEEP Robotics Lynx M20

3.6 Fourier?Intelligence Robot Communication Architecture
Basic Parameters of Fourier Robots
Communication Architecture of Fourier Robot N1
Partial Communication Bill of Materials of Fourier Humanoid Robot Fourier N1
Electrical Architecture of Fourier Robot GR-1
Electrical Architecture Disassembly of Fourier Robot GR-1

3.7 Beijing Innovation Center of Humanoid Robotics Communication Architecture
Communication Architecture Parameters of Tiangong 2.0
Communication Capabilities of Cerebrum and Cerebellum Modules of Tiangong 2.0 
Dexterous Hand and Actuator Communication Architecture of Tiangong 2.0
Sensor and Voice Module Communication Architecture of Tiangong 2.0
Communication Architecture Parameters of Tianyi 2.0

3.8 Humanoid Robot (Shanghai) Co., Ltd. Communication Architecture
Perception and Control System Design of "Qinglong"
Communication Architecture of "Qinglong" Robot
Motion Control Computer Communication Architecture of "Qinglong"
Arm and Actuator Communication Architecture of "Qinglong"
Communication Device Execution Layer of "Qinglong"

3.9 Communication Architectures of Other Robot Manufacturers
Tesla EtherLoop High-speed Bus Technology
External Communication Configuration of Tesla Optimus
Communication System of Xiaomi CyberOne
Communication System Architecture of Xiaomi CyberOne
Communication Parameters of LimX Dynamics LimX Oli Robot
Communication Interfaces of LimX Dynamics LimX Oli Robot 


4 Chinese Communication Chip and Module Vendors
4.1 GigaDevice Semiconductor
Robot Chip Product Layout
Robot Internal Communication Network Chips (1)
Robot Internal Communication Network Chips (2)
Joint Control Chips
EtherCAT Servo Slave Station Solution
High-performance MCUs
Coreless?Motor Solutions

4.2 Triductor Technology
Communication Chip Products and Solutions
Cooperation in the Field of Embodied AI Robots
EtherCAT Extension Technology Layout
EtherCAT Slave Station Control Chips
NearLink Chip Series

4.3 HPMicro Semiconductor
Humanoid Robot Product Layout (1)
Humanoid Robot Product Layout (2)
Robot Joint-specific Chip Modules
HPM6E8Y-based Joint Motor Driver Solution
MCUs Suitable for Robot Hands
MCUs Suitable for Robot Joints

4.4 Codefair Semiconductor
EtherCAT Slave Station Controller Chips
Series Working Modes
Series Chips (1)
Series Chips (2)

4.5 Rockchip 
Strategic Layout in Robot Industry 
EtherCAT Bus: Real-time Ethernet Communication Solution for Robots
Specialized Robot SDK and Grouped Development Board Platform
High-performance SOCs (1)
High-performance SOCs (2)
EtherCAT Multi-axis Motion Control Solution

4.6 Motorcomm?
Robot PHY Chip Layout
Gigabit Ethernet Physical Layer Chips
Single-port 2.5G Ethernet Physical Layer Chips

4.7 ASIX Electronics
Industrial Ethernet Chips (1)
Industrial Ethernet Chips (2)
Robot Arm Solutions
Industrial Ethernet Chips (3)
Self-developed Master Station Software Protocol Stack

4.8 NIIC?
Core Communication Technologies for Embodied AI
NIIC?Participated in the Drafting of Embodied AI Communication Standards
Cooperation with Intel on Embodied AI Controllers 
Embodied AI Cerebrum and Cerebellum Network Configuration 
Flagship Embodied AI Cerebrum and Cerebellum Network Configuration 

4.9 Geehy?Semiconductor
Robot Main Control + Communication Module Solution
High-precision Encoder-specific MCUs
Bus-type Low-voltage Servo Solutions
Main Control Chips
Motor Control SoCs

4.10 Nsing Technologies
Embodied AI Robot Product Layout
Embodied AI Robot Product Layout - Communication Performance Overview 
Drive Module Gateway Chips
Joint Drive Module Chips
Dexterous Hand Drive Chips

4.11 Other Chinese Communication Chip and Module Vendors
Quectel’s AI Modules
Quectel’s Edge Computing-enabled Development Boards and Multi-modal Handheld Terminals
Meig Smart Technology’s Industry-grade Edge AI BOX Solutions

5 Foreign Communication Chip and Module Vendors
5.1 Infineon 
Robot Communication Chip Module Layout
Wireless Communication Chips
Integrated EtherCAT MCU Solutions
Microcontroller Solutions
Customized Microcontroller Solutions for Humanoid Robots

5.2 TI
Cooperation with Apptronik to Build Humanoid Robots
Embedded Processor Solutions
Single Pair Ethernet (SPE) Technology
Single Pair Ethernet (SPE) PHY Chips 
Communication Capabilities of TMS Series High-performance MCUs
MCU Communication Architecture Design
MCU Communication Capabilities
Decentralized or Distributed Architecture
Drive MCUs
Robot Controllers

5.3 NXP 
Three Core Product Lines and Layout for Embodied AI Robots
Main Control MCU Communication
Dexterous Hand Solutions
EtherCAT + Motor Control Solutions
Domain Controllers and CAN FD Gateway Products
Cerebrum and Motion Control Products
Advantages of NXP I3C Bus Topology Dexterous Hand Solutions

5.4 Altera
Altera Spin-off to Deepen FPGA Full-stack Layout in the AI Era
Robot Strategic Planning
Agilex? FPGA Product Portfolio
EtherCAT Slave Station Solutions (1)
EtherCAT Slave Station Solutions (2)

5.5 Renesas Electronics
Advantages for Ethernet
Robot Control and Communication Solutions
Microcontrollers
Single-chip Solutions for EtherCAT
Robot-specific Communication and Remote I/O
High-performance MCUs

5.6 STMicroelectronics
Embodied AI Robot Layout
High-performance MCUs
Dexterous Hand Solutions
Dual-motor Servo Drive Solutions with EtherCAT Connectivity
RS-485 Transceiver

5.7 Microchip 
Microchip PolarFire? FPGA Series
New-generation Optical Ethernet PHY Transceivers
Microchip PCIe? Solutions
High-performance Ethernet Solutions

5.8 Analog Devices (ADI)
Core Products for Humanoid Robots
Communication Connection Solutions for Embodied AI Robots
GMSL and Ethernet Technologies
Highly Integrated Hardware Intelligent Servo Motor Drive Control Chips
SPE Products Connecting Sensors and Actuators
Industrial Ethernet Physical Layer (PHY)
Real-time Ethernet Multi-protocol Switch Chips

5.9 Onsemi
Embodied AI Robot Layout
Product Series for Embodied AI Robots
Treo Analog and Mixed Signal Platform
10Base Ethernet Communication Solutions for Embodied AI Robots
External Communication Solutions for Embodied AI Robots
Motor Drive Solutions for Embodied AI Robots
Dexterous Hand Solutions for Embodied AI Robots

5.10 Other Foreign Communication Chip and Module Vendors 
Xilinx Kintex UltraScale
Lattice Semiconductor’s Embedded Real-time Sensing and Control Solutions
Lattice Semiconductor’s Next-generation Small FPGA Platforms
Beckhoff Specialized ASICs as EtherCAT Slave Station Controllers

Next-Generation Embodied AI Robot Communication Network Topology and Chip Industry Report, 2026

AI Robot Communication Network and Chip Research: Six Evolution Trends and Chip Transformation Embodied AI robots, namely the new generation of AI robots integrating large AI models and physical enti...

Swarm Intelligence and Robotic Collaboration Application Report, 2025

Research on swarm intelligence and robotic collaboration: Swarm intelligence and robotic collaboration will break through the boundaries of individual intelligence and will be widely adopted across va...

Robot Controllers (Brain & Cerebellum) Research Report, 2025

Robot Controller Research: Brain-Cerebellum Integration Becomes a Trend, and Automotive-Grade Chips Migrate to Robots ResearchInChina has released the Robot Controllers (Brain & Cerebellum) Resea...

Tactile Sensor Research Report, 2025

 ResearchInChina has released the "Tactile Sensor Research Report, 2025", which conducts research, analysis and summary on the basic concepts, technical principles, advantages and disadvantages o...

Embodied AI and Humanoid Robot Market Research 2024-2025: Product Technology Outlook and Supply Chain Analysis

Six Trends in the Development of Embodied AI and Humanoid Robots In 2025, the global humanoid robot industry is at a critical turning point from technology verification to scenario penetration, and t...

Global and China Smart Meters Industry Report, 2022-2027

Meters are widely used in the national economy and are an important part of metering to promote the development of metering. As a legal measuring tool, meters are mainly used in the supply process of ...

China Smart Agriculture and Autonomous Agricultural Machinery Market Report, 2022

Research on smart agriculture and autonomous agricultural machinery: top-level design, agricultural digitization and automation present a potential marketAmid the pandemic, the conflict between Russia...

Global and China Heat Meters Industry Report, 2022-2027

A heat meter is an instrument used to measure, calculate and display the value of heat released or absorbed by water flowing through a heat exchange system, and is mainly used for measuring the heatin...

Global and China CNC Machine Tool Industry Report, 2022-2027

As typical mechatronics products, CNC machine tools are a combination of mechanical technology and CNC intelligence. The upstream mainly involves castings, sheet metal parts, precision parts, function...

Global and China Hydraulic Industry Report, 2021-2026

Hydraulic components are key parts for mobile machineries including construction machinery, agricultural and forestry machinery, material handling equipment and commercial vehicle. The global construc...

China Motion Controller Industry Report, 2021-2026

The motion control system is the core component of intelligent manufacturing equipment, usually composed of controllers, motors, drivers, and human-computer interaction interfaces. Through the control...

Global and China Industrial Robot Servo Motor Industry Report, 2021-2026

As the actuator of control system, servo motor is one of the three crucial parts to industrial robot and its development is bound up with industrial robots. Given the slow progress of 3C electronics a...

Global and China Industrial Laser Industry Report, 2020-2026

As one of the most advanced manufacturing and processing technologies in the world, laser technology has been widely used in industrial production, communications, information processing, medical beau...

Global and China Mining-use Autonomous Driving Industry Report, 2020-2021

Demand and policies speed up landing of Autonomous Driving in Mining Traditional mines have problems in recruitment, efficiency, costs, and potential safety hazards, while which can be solved by aut...

Autonomous Agricultural Machinery Research Report, 2020

Autonomous Agricultural Machinery Research: 17,000 sets of autonomous agricultural machinery systems were sold in 2020, a year-on-year increase of 188% Autonomous agricultural machinery relies heavil...

Global and China CNC Machine Tool Industry Report, 2020-2026

As a typical type of mechatronic products, CNC machine tools combine mechanical technology with CNC intelligence. The upstream mainly involves castings, sheet weldments, precision parts, functional pa...

Global and China Hydraulic Industry Report, 2020-2026

Hydraulic parts, essential to modern equipment manufacturing, are mostly used in mobile machinery, industrial machinery and large-sized equipment. Especially, construction machinery consumes the overw...

Global and China Industrial Robot Speed Reducer Industry Report, 2020-2026

Controller, servo motor and speed reducer, three core components of industrial robot, technologically determine key properties of an industrial robot, such as work accuracy, load, service life, stabil...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号