Next-generation Central and Zonal Communication Network Topology and Chip Industry Research Report, 2025
  • Aug.2025
  • Hard Copy
  • USD $4,700
  • Pages:690
  • Single User License
    (PDF Unprintable)       
  • USD $4,500
  • Code: XX015
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,800
  • Hard Copy + Single User License
  • USD $4,900
      

The automotive E/E architecture is evolving towards a "central computing + zonal control" architecture, where the central computing platform is responsible for high-computing-power tasks, and zonal controllers are responsible for executing specific control functions.

"Domain-centralized" architecture communication framework:

Various domains form a backbone network through gateways, and data intercommunication and operations are realized through communication protocols such as SOME/IP and DDS, and communication middleware.
A backbone network such as CAN-FD and 100M/1G Ethernet has been formed.

"Central + Zonal" architecture communication framework:

Communication bandwidth improvement: Transitioning from domain controllers to central computing units, which physically concentrate various important computing units, including intelligent gateways, cockpit domain controllers, ADAS domain controllers, and the central computing part of some zonal controllers. This physical concentration directly shortens communication distances and optimizes communication bandwidth by an order of magnitude.

Communication interface upgrade: From CAN-FD and 1G Ethernet to various advanced interfaces such as D2D, 10G Ethernet, fiber optic communication, PCIe5.0, CXL, NVLink, and UCIe.

Integration of high-speed communication and MCU control capabilities: With the rise of advanced functions such as ADAS and autonomous driving, even the most powerful MCU cannot quickly acquire and share data without a high-speed network; conversely, without a powerful real-time MCU, mere communication channels cannot precisely control vehicle behavior.

According to the connection range, automotive communication networks can be divided into in-vehicle networks and out-of-vehicle networks. The in-car network architecture is mainly evolving towards a central ring network architecture, and the application of fiber optic Ethernet in vehicles is advancing; the out-of-car network is divided into short-range and long-range networks, with diverse application scenarios that cannot be supported by a single technology, requiring the collaborative development of multiple technologies such as V2X and satellite Internet.

Application scenarios and trends of next-generation high-speed communication links

Next-generation Central + Zonal architecture passenger cars exchange massive amounts of data in real-time between sensors such as cameras, radars, and LiDARs, high-definition display units, and high-performance central computing units. They also support full-vehicle OTA software updates, remote diagnostics, and functional safety requirements, placing unprecedented composite demands on in-vehicle networks for high bandwidth, low latency, and security.

Such huge data volumes pose unprecedented challenges to data transmission speed and stability. Traditional communication transmission architectures struggle to meet the real-time and smooth data transmission requirements of new-generation automotive intelligence, creating an urgent need for faster and more reliable communication technologies.

(1) Surge in data volume due to improved camera resolution

As the level of autonomous driving increases, the precision requirements for environmental perception become more stringent. In-vehicle cameras, as important visual sensors, are inevitably upgrading in resolution.

1-5MP cameras: Mainly used in surround-view and side-view scenarios, transitioning from 1.3MP to 3MP/5MP.

8MP cameras: Core growth driver in the next 5 years, promoted by upgrades from L2 front-view integrated systems to 8MP, highway (L2.5)/urban NOA (L2.9), and camera mirror system (CMS); 8MP will account for over 35% of total shipments by 2030.

New technologies such as 10+ MP front-view cameras, 4D imaging radar fusion, and light field lenses (commercialization in 2027) will reshape the perception architecture to provide better image quality and more detailed information for advanced ADAS/AD algorithms. Sony has launched a 17MP product with a detection range of 250 meters. High-resolution cameras capture richer environmental details, crucial for autonomous vehicles to accurately identify traffic signs, pedestrians, and other vehicles.

With the increasing proportion of high-level autonomous vehicles and high hardware redundancy among automakers, the average number of cameras per vehicle will grow from 4 in 2024 to 8.3 in 2030, according to ResearchInChina. ADAS camera transmission requires 1 serializer chip per camera, while deserializer chips typically support multiple channels (e.g., 4-in-1), with an average of 4 cameras sharing 1 deserializer.

VelinkTech's self-developed high-speed in-vehicle SerDes chip was successfully mass-produced and installed in the 2026 Lynk & Co 06, marking the world's first large-scale mass production of automotive-grade SerDes chips based on the MIPI A-PHY protocol.

(2) Massive data transmission pressure from improved display resolution

Increased communication transmission requirements in intelligent cockpits stem primarily from improved display resolution, advancing from 720P and 1080P to 2K, 4K, and even 8K. 4K single-screen resolution reaches 3840×2160; 8K is even higher, with exponentially growing data volumes. 4K screens require tens of Gbps transmission rates, with multi-screen setups exacerbating demands. High-resolution content transmission between screens in multi-screen interactions must maintain quality while synchronizing additional data, with dynamic switching increasing load. High-resolution multimedia processing and cloud interactions, such as 4K/8K video, AR functions, and AI features, all consume significant bandwidth.

Rsemi launched a 32Gbps high-performance SerDes chip for in-vehicle displays at the 2025 Qualcomm Automotive Technology and Cooperation Summit. This chip adopts an advanced technical architecture, supports full-rate lossless DP interface solutions, is compatible with speeds from 32Gbps to 3.2Gbps, supports 2 to 4 R-LinC outputs, can directly drive 4×4K displays with DSC (Display Stream Compression) technology, and up to 8 displays with daisy-chain technology, providing rich and detailed display effects and flexible, efficient display system solutions for smart cars. Additionally, the deserializer chip integrates Bridge and OSD functions to further enhance system integration.

Norelsys is gradually building a product matrix covering full-scenario in-vehicle transmission needs through step-by-step iterations: "2G → 3.2G → 6.4G → 12.8G → 25.6G". Norelsys has currently mass-produced over 20 HSMT standard in-vehicle SerDes chips, with product lines covering transmission rates from 2Gbps to 12.8Gbps. These chips can adapt to diverse needs such as different specifications of in-vehicle cameras (supporting up to 17MP), 4D radars, LiDARs, and 4K displays.

(3) "Central computing radar" is an important evolution direction for in-vehicle millimeter-wave radars, with raw ADC data transmitted to central computers via high-speed SerDes

With the evolution of vehicle central computing architectures, central computing radar represents an important development direction for in-vehicle millimeter-wave radars. A "central computing radar" refers to a "simplified radar" in which only RF front-end and minimal preprocessing are implemented. The radar transmits raw data to domain controllers via high-speed buses (e.g., high-speed Ethernet or SerDes) for subsequent post-processing. Its advantages include:

Satellite radars adopt centralized processing and power supply: Centralized processing transmits radar data to a central processing unit, reducing processing requirements around sensors; centralized power supply simplifies system power management, improving energy efficiency, reducing energy consumption, and enhancing radar system reliability and performance.

RF front-end technology will gradually mature: Triggering standardization of communication interfaces for "central computing radars," evolving radars into standard perception sensor components (similar to "cameras," where sensors are no longer coupled with domain control software). This will enable more flexible adaptation and replacement of "central computing radars" in vehicles.

Transmission of raw ADC data: Under end-to-end algorithm architectures, using more raw radar signals (with less information loss) may yield better overall perception performance.

MMICs for central computing radars require higher RF front-end performance but lower processor performance. Currently, TI and NXP have launched chip solutions for central computing radars.

XretinAl Technology launched a 4D radar central computing system based on Black Sesame Technologies' Huashan-2 A1000 chip, which uniformly processes raw radar data in domain controllers via high-speed Ethernet or SerDes.

Application trends of fiber optic Ethernet high-speed communication

In the automotive sector, the rapid increase in sensor number and higher real-time requirements have gradually strained traditional electrical communication methods. From sensors to ECUs and from central computing platforms to display systems, numerous devices require high-speed, stable interconnection. The complex electromagnetic environment inside vehicles further subjects electrical communication to signal interference and reduced reliability.

In 2023, the IEEE Standards Association released the in-vehicle fiber optic Ethernet technical standard IEEE 802.3cz-2023, adding physical layer specifications and management parameters for 2.5 Gb/s, 5 Gb/s, 10 Gb/s, 25 Gb/s, and 50 Gb/s operations over glass fiber in automotive environments.

Currently, fiber optic Ethernet has moved from experimental verification to commercial implementation, building high-bandwidth, low-latency, secure, and controllable in-vehicle communication backbones through CSI packaging, path replication, and multi-interface integration. However, there remain unresolved controversies in in-vehicle fiber optic communication solutions, primarily regarding fiber optic and optical communication components, especially laser selection.

A complete in-vehicle optical communication system consists of fiber optic harnesses, optical modules, and connectors:
Fiber optic harnesses represent the most technically mature component with the highest industry participation, being one of the first key components to evolve from purely electrical to fiber optic.
In-vehicle optical modules operate in harsher environments, requiring stricter specifications including wide temperature range adaptation (-40°C to over 105°C), ultra-long service life (over 15 years), high reliability, and adaptation to various extreme environments.
In-vehicle fiber optic connectors must not only meet conventional performance metrics such as insertion loss and return loss but also maintain stability under high-frequency vibration.

Compared to relatively backward traditional 100M/1G/10G copper automotive Ethernet, China's supply chain has developed competitiveness in fiber optic Ethernet, with automotive-grade solutions available across all links, creating opportunities for leapfrog development. As intelligent vehicles transition to advanced autonomous driving and central centralized architectures, "fiber advancement and copper retreat" has become a viable option.

HingeTech has introduced a communication architecture for automobiles using an all-optical network. Its self-developed high-speed fiber optic TSN centralized gateway architecture enables high-bandwidth, ultra-low latency, low-cost, and highly deterministic transmission of massive in-vehicle network communication data via fiber optics, supporting a maximum transmission rate of 10Gbps with excellent EMC performance. This architecture is primarily applied in systems including ADAS, autonomous driving, 360° surround-view, in-vehicle infotainment, BMS, and centralized computing architectures, with a maximum transmission bandwidth of 25Gbps.

EEA optical communication architectures built on optical modules connect multiple optical modules with multiple zonal gateways, which can be replaced with other controllers such as T-Boxes and domain controllers as needed.

In hardware design, BTB connectors link optical modules and zonal gateways, with data and control signals transmitted via interfaces such as MIPI-CSI, SGMII, I2C/SPI, and GPIO.

Optical modules and zonal gateways are placed in different vehicle zones, with nearby ECUs connected to adjacent optical modules or zonal gateways. If zonal gateways receive traditional CAN or LIN signals, they transmit them to optical modules for conversion to optical signals for processing by the central computing platform. Different zonal gateways can exchange data via optical modules.

Optical modules are primarily responsible for fiber optic signal transceiving, receiving GMSL2 camera signals and fiber optic Ethernet camera signals, receiving fiber optic LiDAR signals, and forwarding fiber optic signals. EEA optical communication architectures built on optical modules enable high-speed, low-latency transmission of large data flows with beneficial EMC performance while remaining compatible with traditional networks.

Li Auto is collaborating with HingeTech to develop an in-vehicle optical communication test bench, which has completed A-sample delivery. This test bench incorporates jointly developed in-vehicle optical communication Ethernet technology, with core components including in-vehicle optical modules, in-vehicle fiber optic connectors, and in-vehicle optical fibers.

In 2024, Dongfeng collaborated with Yangtze Optical Fiber and Cable (YOFC) to complete the first research phase, achieving the transition from industrial-grade to automotive-grade cable assemblies. The research comprehensively validated performance under extreme environments such as high temperatures (125°C) and high vibrations (V3 level), completing a full verification process from assemblies to individual components and from test benches to actual vehicles, ensuring applicability across all vehicle environments including cockpits, chassis, and roofs.

Research focused on designing and optimizing optical fibers, cables, and connectors, ultimately producing automotive-grade cable harness assemblies with complete optical, mechanical, and environmental characteristics. Rigorous verification confirmed stable operation under various complex environments including extreme cold and heat. Component verification included 53 key tests covering optical performance, mechanical strength, and environmental adaptability. Bench testing evaluated over ten indicators including Ethernet communication functionality, robustness, and voltage stability according to national standards (e.g., GB/T 24581, QC/T 2910) and enterprise standards.

For vehicle testing, the Dongfeng Eπ007 model completed 12,000 km of extreme road testing in Xiangyang, including bumpy and high-vibration scenarios, with stable communication and no packet loss.

Chapter 1 Central + Zonal Communication Topology Architecture
1.1 Definition and Classification of In-Vehicle Communication Networks
Classification of In-Vehicle Communication Networks
Classification System and Technical Overview of In-Vehicle Communication Networks (1)
Classification System and Technical Overview of In-Vehicle Communication Networks (2)
Classification System and Technical Overview of In-Vehicle Communication Networks (3)

1.2 Deployment Status and Trends of Central + Zonal Architecture
Evolution Trend of Vehicle E/E Architecture
In Central + Zonal Architecture, Communication Bandwidth Will Increase Significantly by Orders of Magnitude
In Central + Zonal Architecture, Control and Communication Functions Are Zone-Integrated
Deployment Status of E/E Architecture and Future Five-Year Trend, 2024-2030E
Deployment Status of E/E Architecture and Future Five-Year Trend, 2024-2030E (Appendix Table)
Three Development Stages in E/E Evolution: Multi Box, One Box, One Chip (1)
Three Development Stages in E/E Evolution: Multi Box, One Box, One Chip (2)
Multi-Domain DCU — Typical Multi Box Solution
Cockpit-Driving Integrated CCU — One Box Solution
Cockpit-Driving Integrated CCU — Typical One Box Solution
Central Computing CCU — One Chip Solution
Central Computing CCU — Typical One Chip Solution
Shipment Proportion of Multi BOX / One BOX Solutions
Central Computing CCU — Development Direction of Central + Zonal Architecture (1)
Central Computing CCU — Development Direction of Central + Zonal Architecture (2)
Central Computing CCU — Development Direction of Central + Zonal Architecture (3)
Central Computing CCU — Development Direction of Central + Zonal Architecture (4)

1.3 Cockpit-Driving Integration Architecture Design and Communication Requirements
How Central + Zonal Architecture Reconstructs Automotive Nervous System
Evolution of Central + Zonal Architecture: Cross-Domain Integration and Mechatronics
Evolution of Central + Zonal Architecture: Necessity of Cockpit-Driving Integration (1)
Evolution of Central + Zonal Architecture: Necessity of Cockpit-Driving Integration (2)
Evolution of Central + Zonal Architecture: Key Issues in Cockpit-Driving Integration - Data Communication and Protocol Optimization
Evolution of Central + Zonal Architecture: Key Issues in Cockpit-Driving Integration - System Compatibility and Expansion Breakthroughs
Evolution of Central + Zonal Architecture: Cockpit-Driving System Integration Strategy - Hardware Integration Architecture (1)
Evolution of Central + Zonal Architecture: Cockpit-Driving System Integration Strategy - Hardware Integration Architecture (2)
Evolution of Central + Zonal Architecture: Cockpit-Driving System Integration Strategy - Software Collaboration Architecture (1)
Evolution of Central + Zonal Architecture: Cockpit-Driving System Integration Strategy - Software Collaboration Architecture (2)
Evolution of Central + Zonal Architecture: Cockpit-Driving System Integration Strategy - Human-Machine Interaction Architecture
Evolution of Central + Zonal Architecture: Circuit Multiplexing Integration Strategy for Cockpit-Driving Integrated Domain Control
Evolution of Central + Zonal Architecture: Image Processing Strategy for Cockpit-Driving Integrated Domain Control
Evolution of Central + Zonal Architecture: Unified Management of System State Machines for Cockpit-Driving Integrated Domain Control
Evolution of Central + Zonal Architecture: Storage Multiplexing for Cockpit-Driving Integrated Domain Control
Evolution of Central + Zonal Architecture: OTA Reuse and Communication Diagnostics, Electrical Inspection Strategies for Cockpit-Driving Integrated Domain Control
Establishment of Central + Zonal Architecture Communication Architecture
Communication Network Construction of Central Computing Platform in Zonal Architecture
Communication Requirements in Central + Zonal Architecture: Backbone Communication
Communication Requirements in Central + Zonal Architecture: Backbone Communication — Communication Topology for L3/L4 Autonomous Driving
Communication Requirements in Central + Zonal Architecture: Backbone Communication — High-Speed Ethernet (1)
Communication Requirements in Central + Zonal Architecture: Backbone Communication — High-Speed Ethernet (2)
Communication Requirements in Central + Zonal Architecture: Backbone Communication — In-Vehicle Ethernet Switch Chips
Communication Requirements in Central + Zonal Architecture: Backbone Communication — In-Vehicle Fiber Optic Ethernet
Communication Requirements in Central + Zonal Architecture: Local Low-Speed Applications
Communication Requirements in Central + Zonal Architecture: Local Low-Speed Applications — Zonal ECU Communication (10Base-T1s and CAN-XL)
Communication Requirements in Central + Zonal Architecture: High-Speed Video Transmission (10G+ SerDes)
Communication Requirements in Central + Zonal Architecture: High-Speed Video Transmission (10G+ SerDes)
Communication Requirements in Central + Zonal Architecture: Inter-Chip Interconnection
Communication Requirements in Central + Zonal Architecture: Inter-Chip Interconnection — Communication Between SoC and Storage
Communication Requirements in Central + Zonal Architecture: Inter-Chip Interconnection — NVIDIA NVLink C2C
Communication Requirements in Central + Zonal Architecture: Edge-Side Wireless Communication
Communication Requirements in Central + Zonal Architecture: Zonal Gateway/Central Gateway
Communication Requirements in Central + Zonal Architecture: Central Gateway
Communication Requirements in Central + Zonal Architecture: Zonal Gateway
Communication Requirements in Central + Zonal Architecture: Zonal Gateway Processor Selection
Communication Requirements in Central + Zonal Architecture: Vehicle-Cloud Interconnection
Cybersecurity Challenges in Central + Zonal Architecture
Cybersecurity Protection Solutions for Ethernet Applications in Central + Zonal Architecture (1)
Cybersecurity Protection Solutions for Ethernet Applications in Central + Zonal Architecture (2)
Cybersecurity Protection Solutions for Ethernet Applications in Central + Zonal Architecture (3)

Chapter 2 Evolution Trends in In-Vehicle Communication (by Sub-Application Scenarios)
2.1 Communication Requirements for Intelligent Driving Scenarios
2.1.1 Penetration Rate of L1-L4 Intelligent Driving Systems in China's Passenger Cars
China’s "Taxonomy of Driving Automation for Vehicles"
Installation rate of L1-L4 intelligent driving systems (including hardware pre-embedded) in China's Passenger Cars, 2022-2030E
2.1.2 Communication Links in Intelligent Driving Scenarios
Communication Logic in intelligent Driving Scenarios
Autonomous Driving Significantly increases Requirements for Vehicle Communication Network Performance, Computing Power, And Speed
Typical Communication Connections in Autonomous Driving Systems
Peripheral Communication of Autonomous Driving Domain Controllers
2.1.3 Communication Links for Intelligent Driving Cameras
Demand Prospects for ADAS In-Vehicle Cameras
Communication Bandwidth Requirements for High-Level ADAS
360° Surround-View Communication Links
Scenario Matching of SerDes Communication Chips for In-Vehicle Cameras (1)
Scenario Matching of SerDes Communication Chips for In-Vehicle Cameras (2)
SerDes Communication Bandwidth Requirements for In-Vehicle Cameras: Design of High-Speed Lossless Transmission In-Vehicle Camera Systems (1)
SerDes Communication Bandwidth Requirements for In-Vehicle Cameras: Design of High-Speed Lossless Transmission In-Vehicle Camera Systems (2)
Application of Automotive-Grade SerDes Chips in Cameras for Different ADAS Levels
Application of Automotive-Grade SerDes Chips in Cameras for Different ADAS Levels: Typical Configurations for Highway/Urban NOA
Appendix: Camera Installations and SerDes Communication Chip Deployments by Intelligent Driving Level in China, 2022-2030E (1)
Appendix: Camera Installations and SerDes Communication Chip Deployments by Intelligent Driving Level in China, 2022-2030E (2)
Appendix: Camera Installations and SerDes Communication Chip Deployments by Intelligent Driving Level in China, 2022-2030E (3)
Integration Solutions for SerDes Sensors (1): Rsemi Serializer-Deserializer Integrated Chip Solution
Integration Solutions for SerDes Sensors (2): Rsemi 6-Channel Deserializer Chip Solution
Integration Solutions for SerDes Sensors (3): Rsemi & Sony Semiconductor "Intelligent Driving 5V Super Vision" Solution
Integration Solutions for SerDes Sensors (4): iCatch Technology’s Multi-Channel Surround-View Monitoring System Based on Valens VA7000
Integration Solutions for SerDes Sensors (5): 8MP Camera Connection Solution Based on Valens VA7000
2.1.4 Communication Links for Intelligent Driving Radars and 4D Imaging Radars
Radar: Working Principle and Structural Composition
Current Communication Methods for In-Vehicle Radars and 4D Imaging Radars
Next-Stage Evolution Direction of In-Vehicle Radars: Central Computing Radar (1)
Next-Stage Evolution Direction of In-Vehicle Radars: Central Computing Radar (2)
Implementation Solutions for Radars Based on Algorithm Deployment Locations (1)
Implementation Solutions for Radars Based on Algorithm Deployment Locations (2)
Implementation Solutions for Radars Based on Algorithm Deployment Locations (3): Central Computing Radar
Schematic Diagram of Multiple "Central Computing Radars" Connected Via SerDes Interfaces
Performance Improvement Logic for "Central Computing Radars" — Higher Performance (1)
Performance Improvement Logic for "Central Computing Radars" — Higher Performance (2)
Performance Improvement Logic for "Central Computing Radars" — Lower System Costs (1)
Performance Improvement Logic for "Central Computing Radars" — Lower System Costs (2)
Performance Improvement Logic for "Central Computing Radars" — Other Factors (1)
Performance Improvement Logic for "Central Computing Radars" — Other Factors (2)
Key Challenges of "Central Computing Radars"
Deployment Cases of Central Computing Radar Products: Continental AG
Deployment Cases of Central Computing Radar Products: Ambarella Oculii (1)
Deployment Cases of Central Computing Radar Products: Ambarella Oculii (2)
Deployment Cases of Central Computing Radar Products: Ambarella Oculii (3)
Deployment Cases of Central Computing Radar Products: XretinAl Technology (1)
Deployment Cases of Central Computing Radar Products: XretinAl Technology (2)
Deployment Cases of Central Computing Radar Products: Fusionride
Deployment Cases of Central Computing Radar Products: Others
Chip Solutions for Central Computing Radars: TI (Texas Instruments)
Chip Solutions for Central Computing Radars: NXP
Chip Solutions for Central Computing Radars: NXP
Market Size for Radars (including 4D Imaging Radars and Central Computing Radars) in China's Passenger Cars, 2022-2030E
2.1.5 Communication Links for Intelligent Driving LiDARs
Current Structural Principles and Bandwidth Requirements of Lidars
Next-Stage "Lidar Probe" Centralization Scheme (1)
Next-Stage "Lidar Probe" Centralization Scheme (2)
Market Size for LiDARs in China's Passenger Cars, 2022-2030E
2.1.6 Integrated Communication Links for Intelligent Driving Domain Controllers
Communication Links in Intelligent Driving Domains: Ethernet Switch Chips and Ethernet PHY Chips
Huawei’s MDC610 Intelligent Driving Domain Controller: Hardware Motherboard and Chip Components
Huawei’s MDC610 Intelligent Driving Domain Controller: System Design Schematic
Huawei’s MDC610 Intelligent Driving Domain Controller: Cost Assessment
Teardown of XPeng’s Xavier Autonomous Driving Domain Controller Board (1)
Teardown of XPeng’s Xavier Autonomous Driving Domain Controller Board (2)
Teardown of XPeng’s Xavier Autonomous Driving Domain Controller Board (3)
Tesla’s Autonomous Driving Domain Controller AP3.0 Hardware Board
Li Auto L9 Autonomous Driving Domain Controller
ThunderX Auto RazorDCX Tongass: Qualcomm SA8255P Cockpit-Parking Integrated Domain Controller

2.2 Communication in Intelligent Cockpit Scenarios
2.2.1 Penetration Rate of L0-L4 Intelligent Cockpits in China's Passenger Cars
Classification Logic for Intelligent Cockpit Levels and Communication Interface Configurations
Penetration Rates of Intelligent Cockpits by Level (L0/L1/L2/L3/L4), 2024-2030E
2.2.2 Communication Links in Intelligent Cockpit Scenarios
Communication Connection Methods for Intelligent Cockpit Hardware Platforms
Classification of Intelligent Cockpit Hardware Platform Systems
Core Modules of Intelligent Cockpit Hardware Platforms
Main Components of Intelligent Cockpit Domain Controllers (1)
Main Components of Intelligent Cockpit Domain Controllers (2)
2.2.3 Communication Links for Center Console Infotainment Displays
In-Vehicle Display Communication Links (1)
In-Vehicle Display Communication Links (2)
Analysis of Communication Links and Requirements for In-Vehicle Displays with Different Resolutions
Types of In-Vehicle Display Interfaces (1)
Types of In-Vehicle Display Interfaces (2)
Types of In-Vehicle Display Interfaces (3)
Types of In-Vehicle Display Interfaces: Embedded DisplayPort (eDP)
Types of In-Vehicle Display Interfaces: Embedded DisplayPort (eDP)
Types of In-Vehicle Display Interfaces: SerDes Supporting Multiple Interface Types
Integrated SerDes Communication Solutions for Display Terminals (1): Norelsys One-stop SerDes Solution
Integrated SerDes Communication Solutions for Display Terminals (2): Rsemi 32Gbps High-performance SerDes Chip for In-Vehicle Displays
Integrated SerDes Communication Solutions for Display Terminals (3): Inova’s Automotive Display SerDes Solution Supporting 4 Daisy-chained Displays
Integrated SerDes Communication Solutions for Display Terminals (4): ROHM’s Multi-Display Solution for Vehicles (1)
Integrated SerDes Communication Solutions for Display Terminals (5): ROHM’s Multi-Display Solution for Vehicles (2)
Large Center Console Screens (≥10") in China’s Passenger Cars: Installations and Installation Rate, 2024-2025
LCD Instrument Clusters (≥10") in China’s Passenger Cars: Installations and Installation Rate, 2024-2025
Rear-seat Entertainment Screens in China’s Passenger Cars: Installations and Installation Rate, 2024-2025
Co-pilot Screens in China’s Passenger Cars: Installations and Installation Rate, 2024-2025
2.2.4 AR HUD Display Communication Link
AR HUD Display Communication Link
Domestic Passenger Car HUD: Installations and Installation Rate, 2024-2025
Domestic Passenger Car HUD (by Product Type): Installations and Proportion, 2024-2025
2.2.5 Streaming Media Electronic Rearview Mirror Communication Link
Intelligent Cockpit Display Link: Automotive Streaming Media Rearview Mirror
Streaming Media Rearview Mirror & Electronic Exterior Rearview Mirror (CMS): Typical Equipped Models
2.2.6 Summary of In-Vehicle Display Links
Penetration Rate and Supporting Quantity of In-Vehicle Displays (Center Console Instrument, Rear Row, Co-Pilot, Streaming Media, HUD) in China’s Passenger Cars, 2022-2030E
Penetration Rate and Supporting Quantity of In-Vehicle Displays (Center Console Instrument, Rear Row, Co-Pilot, Streaming Media, HUD) in China’s Passenger Cars, 2022-2030E
2.2.7 Intelligent Cockpit Audio Communication Link
Intelligent Cockpit Audio Link
Intelligent Cockpit Audio Link: Digital Microphone - A2B Bus (1)
Intelligent Cockpit Audio Link: Digital Microphone - A2B Bus (2)
Intelligent Cockpit Audio Link: ADI Audio Bus A2B Solution
2.2.8 Intelligent Cockpit Domain Controller Communication Integration Link
Installations and Installation Rate of Domestic Passenger Car Intelligent Cockpit Domain Controllers, January-May 2025
Black Sesame Technologies + Intel: Next-Generation Intelligent Cockpit and Driving Integration Platform (1)
Black Sesame Technologies + Intel: Next-Generation Intelligent Cockpit and Driving Integration Platform (2)
Qualcomm SA8775P Cockpit Domain Controller Platform: Communication Design (Taking Desay SV ICPS01E as an Example)
Qualcomm SA8295P Cockpit Domain Controller Platform Teardown: Front of PCB Upper Board (Zeekr 007)
Qualcomm SA8295P Cockpit Domain Controller Platform Teardown: Back of PCB Upper Board (Zeekr 007)
Qualcomm SA8295P Cockpit Domain Controller Platform Teardown: Interface (Zeekr 007)
Qualcomm SA8295P Cockpit Domain Controller Platform Teardown: Cost Analysis (Zeekr 007)
Qualcomm 8155 Cockpit Domain Controller Platform: Communication Design (Taking Nobo Automotive as an Example)
MediaTek MT2712 Cockpit Domain Controller Platform: Communication Design (Taking Megatronix as an Example)
SemiDrive's Intelligent Cockpit SoC X9 Series Reference Board Based on ROMH SerDes IC
Communication Design in Mercedes-Benz NTG7 Cockpit PCB Board (1)
Communication Design in Mercedes-Benz NTG7 Cockpit PCB Board (2)

2.3 Vehicle Control Communication Scenarios
BMS
Basic Functions of On-Board BMS
On-Board BMS Communication Requirements
Wired BMS Communication Methods
Wired BMS Topology Structure
BMS Wired Communication Solution: Application of Neuron’s AUTBUS Technology in BMS
BMS Wired Communication Solution: Changan Deepal BMS Control Board (1) - Functional Module Division
BMS Wired Communication Solution: Changan Deepal BMS Control Board (2) - Using CAN Communication
BMS Wired Communication Solution: Changan Deepal BMS Control Board (3) - SBC Chip with Integrated CAN-FD
Wireless BMS Communication Methods: Mostly Using Low-Power Bluetooth (Dedicated 2.4GHz)
Wireless BMS Communication Methods: Infineon Bluetooth 5.4 vBMS Solution
Wireless BMS Communication Methods: ADI Dedicated 2.4GHz vBMS Solution
Wireless BMS Communication Methods: NXP Ultra-Wideband (UWB) vBMS Solution (1)
Wireless BMS Communication Methods: NXP Ultra-Wideband (UWB) vBMS Solution (2)
Schematic Diagram of Wireless BMS Power Battery Pack
Wireless BMS Communication Topology and Evolution Trend (1)
Wireless BMS Communication Topology and Evolution Trend (2)
Communication Indicators of wBMS
BMS Wired Communication VS wBMS Wireless Communication
Advantages of Wireless Battery Management System (wBMS)
2.3.2 Chassis-by-Wire System
Current Stage (2025) Chassis-by-Wire System Electrical Architecture (12V), for L2+
Parameters and Indicators of L2+ Chassis-by-Wire System Domain Controller
Future 3-5 Years (2028-2030) Chassis-by-Wire System Electrical Architecture (12+48V), for L3/L4
Chassis-by-Wire System Communication Architecture at L3-L4
5 Years Later (2030+) Chassis-by-Wire System Electrical Architecture (Dual Power 48V), for L5
Wire-controlled Technology Communication Architecture at L5

2.4 Inter-Chip Communication Scenarios
Challenges Faced by Parallel Computing and Transmission of On-Board Processors (1)
Challenges Faced by Parallel Computing and Transmission of On-Board Processors (2)
Applications of PCIe
PCIe Standard Specification: Has Evolved to PCIe 8.0
PCIe Standard Specification: Automobiles Mainly Apply PCIe 4.0 and Below Standards, and Gradually Introduce PCIe 5.0 Standard
PCIe is Suitable for Central + Zonal Architecture: In the Future EEA Architecture, the Market Demand for PCIe Switches is Increasing
PCIe is Suitable for Central + Zonal Architecture: PCIe Switches are Very Suitable for In-Vehicle Networks in the AI Era
Summary of Application Scenarios of Automotive-Grade PCIe Switches
Application Scenarios of Automotive-Grade PCIe Switches: High-Speed Intra-Chip Communication is Required in Multi-Chip on a Single Board
Application Scenarios of Automotive-Grade PCIe Switches: Zonal Architecture Evolution Brings PCIe SSD Storage Requirements (1)
Application Scenarios of Automotive-Grade PCIe Switches: Zonal Architecture Evolution Brings PCIe SSD Storage Requirements (2)
Application Scenarios of Automotive-Grade PCIe Switches
Application Cases of PCIe Switches: OEM Deployment Strategies (1)
Application Cases of PCIe Switches: OEM Deployment Strategies (2)
Application Cases of PCIe Switches (1)
Application Cases of PCIe Switches (2)
Development Process of Automotive-Grade PCIe Switches: Suppliers and Products

Chapter 3 Evolution Trends of Vehicle Communication (by Sub-Technology Type)
3.1 Summary and Comparison of In-Vehicle Communication Bus Technologies
Summary and Comparison Table of In-Vehicle Communication Bus Technologies
Automotive Ethernet Physical Layer Standards

3.2 In-Vehicle Backbone Network Communication Technology (Copper Cable)
3.2.1 100/1000 BASE-T1
Modern Mainstream Backbone Communication: 100 BASE-T1 and 1000 BASE-T1
100 BASE-T1 Application Case: 100Base-T1 Automotive Ethernet Interface Design of SemiDrive G9X Body Domain Controller
100 BASE-T1 Application Case: ONVO L60 Communication Architecture
1000 BASE-T1 Application Case: XPeng XEEA3.5 Vehicle Communication Architecture (1)
1000 BASE-T1 Application Case: XPeng XEEA3.5 Vehicle Communication Architecture (2)
1000 BASE-T1 Application Case: Intelligent Driving Domain Controller Design with Orin as the Core
3.2.2 2.5G Ethernet
Next-Generation Automotive Ethernet: 2.5G Ethernet Ring Network
Cost Comparison Between 2.5G Ethernet and Gigabit Network
Development Process of 2.5G Ethernet Products: Suppliers and Products
2.5G Ethernet Product Solutions (1)
2.5G Ethernet Product Solutions (2)
3.2.3 10G Ethernet
Communication Port Trend (1): The Number of In-Vehicle Ethernet Ports Will Exceed 100 in the Future
Communication Port Trend (2): Chip Vendors Layout Multi-Port Automotive Ethernet Chips
OEMs Have a Strong Demand for 10G+ Bandwidth, and Chip Manufacturers are Accelerating the Deployment of 10G+
10G Automotive Ethernet Solution: Aeonsemi Nemo Chipset
3.2.4 Market Pattern and Product List of Automotive Ethernet PHY Chips
Automotive Ethernet PHY Chips Exist as Independent Chips
Key Technical Parameters of Automotive Ethernet PHY Chips
Global Automotive Ethernet PHY Chip Market Competition Pattern: Dominated by Overseas Enterprises
List and Product Selection of Foreign Automotive Ethernet PHY Chip Suppliers (1)
List and Product Selection of Foreign Automotive Ethernet PHY Chip Suppliers (2)
List and Product Selection of Foreign Automotive Ethernet PHY Chip Suppliers (3)
Domestic Automotive Ethernet PHY Chip Market Competition Pattern: The Domestic First Echelon Has Taken Shape, and Mass Production Capacity Needs to Be Improved
List and Product Selection of Domestic Automotive Ethernet PHY Chip Suppliers (1)
List and Product Selection of Domestic Automotive Ethernet PHY Chip Suppliers (2)
Automotive Ethernet PHY Chip Products (1)
Automotive Ethernet PHY Chip Products (2)
Automotive Ethernet PHY Chip Products (3)
...
3.2.5 Market Pattern and Product List of Automotive Ethernet Switch Chips
Functions of Automotive Ethernet Switch Chips
Deployment Positions of Automotive Ethernet Switch Chips
Demand Analysis of Automotive Ethernet Switch Chips
Global Automotive Ethernet Switch Chip Market Competition Pattern
List and Product Selection of Foreign Automotive Ethernet Switch Chip Suppliers (1)
List and Product Selection of Foreign Automotive Ethernet Switch Chip Suppliers (2)
List and Product Selection of Foreign Automotive Ethernet Switch Chip Suppliers (3)
List and Product Selection of Foreign Automotive Ethernet Switch Chip Suppliers (4)
Domestic Automotive Ethernet Switch Chip Market Competition Pattern
List and Product Selection of Domestic Automotive Ethernet Switch Chip Suppliers (1)
List and Product Selection of Domestic Automotive Ethernet Switch Chip Suppliers (2)
List and Product Selection of Domestic Automotive Ethernet Switch Chip Suppliers (3)
Motorcomm Electronic Automotive-Grade TSN Switch Product - Yushu Series
Automotive Ethernet Switch Chip Product: Application of Realtek Gigabit Automotive Ethernet Switch Chip RTL9068
Cost and Market Analysis of Automotive Ethernet Chips
Price of Automotive Ethernet PHY Chips
Price of Automotive Ethernet Switch Chips
Application Scenarios of Automotive Ethernet
Number of Automotive Ethernet PHY and Switch Chips Equipped in Passenger Cars of Different Autonomous Driving Levels
Installations and Market Size of Ethernet PHY and Switch Chips in Chin’s Passenger Cars, 2022-2030E (1)
Installations and Market Size of Ethernet PHY and Switch Chips in Chin’s Passenger Cars, 2022-2030E (2)
Market Size of Automotive Ethernet Switch Chips in China’s Passenger Cars, 2023-2026

3.3 In-Vehicle Backbone Network Communication Technology (Optical Communication)
Evolution of In-Vehicle Networks
Mainstream In-Vehicle Optical Communication Solutions - Fiber Ethernet and Automotive PON
Conditions for On-Board Application of In-Vehicle Optical Communication Technology
3.3.1 Fiber Ethernet
Automotive Ethernet Fiber Communication: Developing from Copper Cable to Fiber Communication
Automotive Optical Network Based on Silicon Photonics
Automotive Ethernet Fiber Communication: Transmission Medium
Automotive Ethernet Fiber Communication: Background and Advantages of Optical Communication
Advantages of Automotive Ethernet Fiber Communication (1)
Advantages of Automotive Ethernet Fiber Communication (2)
Advantages of Automotive Ethernet Fiber Communication (3)
Advantages of Automotive Ethernet Fiber Communication (4): Comparison of Technical Standards Between Optical Communication and Copper Cable Electrical Communication
Composition of Automotive Ethernet Fiber Communication
Technical Requirements for Automotive Ethernet Fiber Communication
Application Scenarios of Automotive Optical Ethernet Technology
Application Scenarios of Automotive Optical Ethernet Technology: Autonomous Driving (1)
Application Scenarios of Automotive Optical Ethernet Technology: Autonomous Driving (2)
Application Scenarios of Automotive Optical Ethernet Technology: Autonomous Driving (3)
Application Scenarios of Automotive Optical Ethernet Technology: Autonomous Driving (4)
Development Process of Automotive Fiber Ethernet Communication Products
Maturity of Automotive Optical Communication Industry Chain (1)
Maturity of Automotive Optical Communication Industry Chain (2)
AutoLink & Zhongji Innolight Released Automotive Optical Communication Module Products and Solutions
Development Process of Automotive Ethernet Fiber Communication Products: Suppliers and Products (1)
Development Process of Automotive Ethernet Fiber Communication Products: Suppliers and Products (2)
Development Process of Automotive Fiber Ethernet Communication Products (1)
Development Process of Automotive Fiber Ethernet Communication Products (2)
Automotive Fiber Ethernet Communication Solutions (1)
Automotive Fiber Ethernet Communication Solutions (2)
....................
Automotive Fiber Ethernet Communication Solutions (7)
Development Process of Automotive Ethernet Fiber Communication Products: Summary of OEM Layouts
OEM Layouts of Automotive Fiber Ethernet Communication (1)
OEM Layouts of Automotive Fiber Ethernet Communication (2)
OEM Layouts of Automotive Fiber Ethernet Communication (3)
3.3.2 Fiber PON
Evolution and Classification of Optical PON Networks (1)
Evolution and Classification of Optical PON Networks (2)
Technical Advantages of Fiber PON Networks
Market Advantages of Fiber PON Networks
Technical Classification of Automotive Optical PON Networks: XG-PON and XGS-PON Technologies
Automotive Optical PON Network Solutions: Suppliers
Automotive Optical PON Network Solutions: Poncan Semiconductor TS-PON Technology (1)
Automotive Optical PON Network Solutions: Poncan Semiconductor TS-PON Technology (2)
Automotive Optical PON Network Solutions: Poncan Semiconductor TS-PON Technology (3)
Automotive Optical PON Network Solutions: Poncan Semiconductor TS-PON Technology (4)
Automotive Optical PON Network Solutions: SoC Chip of Poncan Semiconductor TS-PON Technology
Application Scenarios of Automotive Optical PON Networks
Industry Chain of Automotive Optical PON Equipment
3.3.3 Automotive Optical Communication Packaging Technology
Automotive Optical Communication Packaging: Relationship Between Silicon Photonics, Optical Modules and CPO
Automotive Optical Communication Packaging: Next-Generation Communication Chip Packaging Technology, CPO
Automotive Optical Communication Packaging: Next-Generation Communication Chip Packaging Technology, Technical Evolution from Pluggable, NPO to CPO
Automotive Optical Communication Packaging: Next-Generation Communication Chip Packaging Technology, SerDes + CPO Integration

3.4 In-Vehicle Low-Speed Communication Technology
3.4.1 10 BASE-T1S
10BASE-T1S Automotive Ethernet
Three Typical 10M Ethernet Physical Layer Configurations
Characteristic 1 of 10BASE-T1S Automotive Ethernet: Supporting Multi-Point Topology Structure, Simplifying Regional Architecture
Characteristic 2 of 10BASE-T1S Automotive Ethernet: PLCA Physical Layer Collision Prevention
Advantages of 10M Automotive Ethernet
Application Scenarios of 10BASE-T1S Automotive Ethernet
List of 10M Automotive Ethernet Chip Manufacturers and Products
10M Automotive Ethernet Product: Microchip LAN867x Series
10M Automotive Ethernet Products
10M Automotive Ethernet Application Solution: BMW Will Adopt ADI's 10BASE-T1S E2B Technology in Intelligent Cockpit Ambient Lights
10M Automotive Ethernet Application Solution: ON Semiconductor 10BASE-T1S Headlight Solution
3.4.2 CAN XL
Evolution Trend of CAN Communication
CAN XL
Technical Specifications and Standardization of CAN XL
CAN-XL OSI Protocol Framework
Typical Application Scenario of CAN XL: Millimeter-Wave Radar
Development Process of CAN-XL Industry
Development Process of CAN-XL Industry: List of Core Product Suppliers and Products of CAN XL (1)
Development Process of CAN-XL Industry: List of Core Product Suppliers and Products of CAN XL (2)
Development Process of CAN-XL Industry: List of Core Product Suppliers and Products of CAN XL (3)
Development Process of CAN-XL Industry: List of Core Product Suppliers and Products of CAN XL (4)
Development Process of CAN-XL Industry: List of Core Product Suppliers and Products of CAN XL (5)
CAN-XL Products (1)
CAN-XL Products (2)
CAN-XL Products (3)
CAN-XL Products (4)
CAN-XL Competitors: Competition Between CAN-XL and FlexRay, 10BASE-T1S Ethernet
3.4.3 CAN FD
CAN Bus Communication: Low-Speed CAN and High-Speed CAN
CAN-FD Communication Bus: Classic CAN-FD
Extended Versions of CAN-FD: CAN FD Light
Extended Versions of CAN-FD: CAN FD SIC
CAN-FD Application Solutions (1)
CAN-FD Application Solutions (2)
CAN-FD Application Solutions (3)
Future Application Trends of Existing CAN Communication Technologies
List and Product Selection of CAN FD Chip Suppliers (1)
List and Product Selection of CAN FD Chip Suppliers (2)
3.4.4 CAN/LIN/FlexRay
Application Scenarios of CAN Transceivers in Automobiles
LIN Bus
Application Scenarios of LIN in Automobiles
Domestic Market Competition Pattern of CAN/LIN Interface Chips: Previously Monopolized by Foreign Manufacturers, Domestic Substitution Trend is Gradually Emerging
Development of Domestic CAN Transceiver Chips
List and Product Selection of CAN/LIN Chip Suppliers (1)
List and Product Selection of CAN/LIN Chip Suppliers (2)
List and Product Selection of CAN/LIN Chip Suppliers (3)
List and Product Selection of CAN/LIN Chip Suppliers (4)
Application Solutions of CAN Transceivers
FlexRay
FlexRay Application Case: Chassis Dynamic Control of Audi A8

3.5 High-Speed Video Transmission Technology
3.5.1 Core Technologies of Automotive SerDes
Automotive High-Speed Video Transmission Technology: Application Scenarios of SerDes
Automotive High-Speed Video Transmission Technology: Working Principle of SerDes (1)
Automotive High-Speed Video Transmission Technology: Working Principle of SerDes (2)
Technical Challenges of Automotive SerDes (1): CDR Clock Data Recovery
Technical Challenges of Automotive SerDes (2): Signal Difference with High-Frequency Attenuation
Technical Challenges of Automotive SerDes (3): PAM4 Encoding Technology
Technical Challenges of Automotive SerDes (4): High-Speed ADC Chips (1)
Technical Challenges of Automotive SerDes (4): High-Speed ADC Chips (2)
Technical Challenges of Automotive SerDes (5): High-Speed ADC Chips (3)
Technical Challenges of Automotive SerDes (6): High-Speed ADC Chips (4)
Technical Challenges of Automotive SerDes (7): Production Process
3.5.2 Automotive SerDes Standards and Protocols
SerDes Standards and Protocols: Summary of Proprietary Protocols (1)
SerDes Standards and Protocols: Summary of Proprietary Protocols (2)
SerDes Standards and Protocols: Proprietary Protocol: GMSL Moving Towards Publicity - Establishment of OpenGMSL Association
SerDes Standards and Protocols: Proprietary Protocol: GMSL Moving Towards Publicity - Evolution of GMSL/LVDS to Automotive Ethernet (1)
SerDes Standards and Protocols: Proprietary Protocol: GMSL Moving Towards Publicity - Evolution of GMSL/LVDS to Automotive Ethernet (2)
SerDes Standards and Protocols: Summary of Public Protocols (1)
SerDes Standards and Protocols: Summary of Public Protocols (2)
SerDes Standards and Protocols: Public Protocol: Comparison of MIPI A-PHY and HSMT Solutions (1)
SerDes Standards and Protocols: Public Protocol: Comparison of MIPI A-PHY and HSMT Solutions (2)
SerDes Standards and Protocols: Public Protocol: Comparison of MIPI A-PHY and HSMT Solutions (3)
SerDes Standards and Protocols: Public Protocol: Comparison of MIPI A-PHY and HSMT Solutions (4)
SerDes Standards and Protocols: Public Protocol: Ecosystem Integration of ASA-ML and MIPI A-PHY
SerDes Standards and Protocols: Public Protocol: Multi-Protocol Integrated Products, VelinkTech MIPI A-PHY and HSMT Dual-Protocol Product
3.5.3 MIPI A-PHY (Public Protocol)
Automotive SerDes Public Standard: MIPI A-PHY
MIPI A-PHY: MASS Universal Communication Framework
MIPI A-PHY: Physical Interface
Core Advantages of MIPI A-PHY Communication Protocol
MIPI A-PHY: Application Scenarios in Automobiles
Two Deployment Phases for Implementing A-PHY Standard in Automobiles
MIPI A-PHY Ecosystem Construction
List of MIPI A-PHY Chip Manufacturers and Products
MIPI A-PHY: Cooperation of Main Promoter Valens
MIPI A-PHY Chip Products (1)
MIPI A-PHY Chip Products (2)
MIPI A-PHY Chip Products (3)
MIPI A-PHY Chip Products (4)
Cost Advantages of Valens VA7000 Chip Solution (1)
Cost Advantages of Valens VA7000 Chip Solution (2)
MIPI A-PHY Chip Solutions (1)
MIPI A-PHY Chip Solutions (2)
3.5.4 HSMT (Public Protocol)
Automotive SerDes Public Standard: HSMT
HSMT Standard Protocol Stack and Transmission Rate
HSMT Chip Products: Norelsys 12G Automotive HSMT-SerDes Chipset (1)
HSMT Chip Products: Norelsys 12G Automotive HSMT-SerDes Chipset (2)
HSMT Chip Solutions (1): Norelsys Solutions for ADAS Cameras
HSMT Chip Solutions (2): Norelsys Solutions for Automotive Displays
3.5.5 ASA ML (Public Protocol)
Automotive SerDes Public Standard: ASA ML
Characteristics and Applications of ASA ML Specifications
List of ASA-ML Chip Manufacturers and Products
ASA-ML Chip Products (1)
ASA-ML Chip Products (2)
3.5.6 GMSL (Proprietary Protocol, Led by ADI)
Automotive SerDes Proprietary Standard: Development and Performance Comparison of GMSL Technology
GMSL Connection Block Diagram
Applications of GMSL in Automotive Products
GMSL-SerDes Chip Solutions: ADI Automotive Camera Solutions (1)
GMSL-SerDes Chip Solutions: ADI Automotive Camera Solutions (2)
3.5.7 FPD-Link (Proprietary Protocol, Led by TI)
Automotive SerDes Proprietary Standard: FPD-Link
Typical Applications and Connecting Harnesses of FPD-Link
Technical Characteristics of FPD Link
Mainstream Application Technologies and Products of FPD-Link: FPD-LINK III
3.5.8 Other Proprietary Protocols
Automotive SerDes Proprietary Standard: APIX (Promoted by Inova)
List of APIX-SerDes Chip Products
APIX3-SerDes Chip Products
Automotive SerDes Proprietary Standard: Clockless Link (Promoted by ROHM)
Clockless Link-SerDes Chip Solutions: ADAS Camera Module Solutions (1)
Clockless Link-SerDes Chip Solutions: ADAS Camera Module Solutions (2)
Clockless Link-SerDes Chip Solutions: ADAS Camera Module Solutions (3)
Automotive SerDes Proprietary Standard: AHDL (Led by AI Micro)
List of Mass-Produced AHDL-SerDes Chip Products
3.5.9 Summary of Domestic and Foreign Automotive SerDes Manufacturers
Summary of Domestic SerDes Manufacturers (1)
Summary of Domestic SerDes Manufacturers (2)
Summary of Domestic SerDes Manufacturers (3)
Summary of Domestic SerDes Manufacturers (4)
Summary of Foreign SerDes Manufacturers (1)
Summary of Foreign SerDes Manufacturers (2)
Summary of Technical Parameters of Mainstream Automotive SerDes (for Camera) (1)
Summary of Technical Parameters of Mainstream Automotive SerDes (for Camera) (2)
Product Summary of Various 10G+ Automotive SerDes Chips
10G+ Automotive SerDes Chips: Rsemi 32Gbps High-Performance Automotive Display SerDes Chip
10G+ Automotive SerDes Chips: Norelsys' 25.6Gbps Automotive SerDes Chip Under Development
10G+ Automotive SerDes Chips: MIPI A-PHY 32Gbps Solution and Pre-Research 48Gbps PAM32 Solution
10G+ Automotive SerDes Chips: AI Micro 20Gbps Automotive-Grade SerDes Chip
3.5.10 Market Size and Competitive Pattern of Automotive SerDes Chips
Market Size of Automotive SerDes Chips in China’s Passenger Cars, 2022-2030E (1)
Market Size of Automotive SerDes Chips in China’s Passenger Cars, 2022-2030E (2)
Market Size of Automotive SerDes Chips in Global Passenger Cars, 2022-2030E (3)
Competitive Pattern of Automotive SerDes Chips
Domestic Substitution of Automotive SerDes Chips (1)
Domestic Substitution of Automotive SerDes Chips (2)

3.6 Edge-Side Wireless Communication
Application Requirements of In-Vehicle Wireless Communication
Application Scenarios of In-Vehicle Wireless Communication
Overview of Automotive Edge-Side Wireless Communication Technology Standards (1)
Overview of Automotive Edge-Side Wireless Communication Technology Standards (2)
3.6.1 Edge-Side Wireless Communication: NearLink
International SparkLink Alliance (iSLA)
Development History of NearLink
System Architecture and Main Characteristics - Access Layer
System Architecture and Main Characteristics - Basic Service Layer, Basic Application Layer
Technical Characteristics of NearLink
NearLink 2.0
NearLink Industry Chain
List of NearLink Chip Suppliers and Products
List of NearLink Module Suppliers and Products (1)
List of NearLink Module Suppliers and Products (2)
List of NearLink Solution Suppliers and Products
List of NearLink Development Software Suppliers and Products
NearLink Chip Products: Sylincom Technology DX-T600 NearLink Short-Range Communication Chip
NearLink Application Solutions: 360 Panoramic Surround-View System (1)
NearLink Application Solutions: 360 Panoramic Surround-View System (2)
NearLink Application Solutions: Immersive Automotive Sound Field and Noise Reduction
NearLink Application Solutions: Wireless Intelligent Battery Management System, Wireless Interactive Screen Projection
NearLink Application Solutions: NearLink Digital Car Key
NearLink Application Solutions: NearLink Digital Car Key - NearLink Phase Difference + TOF Ranging Solution
NearLink Application Solutions: NearLink Digital Car Key - NearLink Precise Trajectory Solution
NearLink Application Solutions: NearLink Digital Car Key - NearLink In-vehicle Solution
NearLink Equipped in AITO M9
Competitors of NearLink: Performance Comparison of Bluetooth, WIFI and NearLink
3.6.2 Edge-Side Wireless Communication: UWB
UWB Operating Frequencies in Major Countries and Regions Worldwide
Channels Supported for UWB Frequency Use in Major Countries and Regions Worldwide
New National Standard for UWB: Interpretation of the 2024 Edition of "Interim Provisions on Radio Management of Ultra-Wideband (UWB) Equipment" (1)
New National Standard for UWB: Interpretation of the 2024 Edition of "Interim Provisions on Radio Management of Ultra-Wideband (UWB) Equipment" (2)
New National Standard for UWB: Interpretation of the 2024 Edition of "Interim Provisions on Radio Management of Ultra-Wideband (UWB) Equipment" (3)
UWB Industry Organizations and Alliances
UWB Industry Standards and Technical Specifications (1)
UWB Industry Standards and Technical Specifications (2)
Relationship Between Fira Technical Specifications and IEEE Standards
Advantages of UWB Lie in Ranging and Positioning
Vehicle-Side Application Scenarios of UWB
Installation Characteristics of UWB Keys
Installation Characteristics of UWB Keys: Price Range Characteristics
Timeline of Digital Key Launches by Major OEMs
OEMs' UWB-Based Digital Key Solutions (1)
OEMs' UWB-Based Digital Key Solutions (2)
UWB Digital Key Integrated Glass Solutions (1)
UWB Digital Key Integrated Glass Solutions (2)

Chapter 4 Foreign Automotive Communication Chip Vendors
4.1 ADI
10Mbps E2B Technology
10Mbps E2B Technology Application Solution: BMW Will Adopt ADI's 10BASE-T1S E2B Technology in Intelligent Cockpit Ambient Lights
Summary of Automotive SerDes Chip Products and Performance Characteristics
OpenGMSL Alliance
Development of GMSL Technology (1)
Development of GMSL Technology (2): GMSL Third-Generation Products
GMSL Serializer/Deserializer Product Line: GMSL Third-Generation Products
GMSL Protocol Products: GMSL-SerDes Product Solutions (1)
GMSL Protocol Products: GMSL-SerDes Product Solutions (2)

4.2 Texas Instruments
Layout of Automotive Network Business
Global Manufacturing Base Layout
Summary of Automotive Ethernet PHY Chip Products and Performance Characteristics
Automotive Ethernet Chip Products (1)
Automotive Ethernet PHY Chips (2)
Automotive Ethernet PHY Chips (3)
10BASE-T1L Automotive Ethernet PHY Chip Products
Summary of Automotive SerDes Series Products and Performance Characteristics
Automotive SerDes Chips (FPD-LINK Serializers/Deserializers)
Mainstream Application Technologies and Products of FPD-Link: FPD-LINK III
FPD Link Serializer/Deserializer Chip Architecture (1)
FPD Link Serializer/Deserializer Chip Architecture (2)
FPD-Link IV Application Roadmap
Automotive CAN Transceiver Product Line
Automotive LIN Transceiver Product Line
Automotive Low-Power Bluetooth Product Line

4.3 Infineon
Layout of Automotive Communication Chip Product Categories
Summary of Brightlane Automotive Ethernet Switch Chip Products and Performance Characteristics
Layout of CAN Product Line
Automotive Ethernet Switch Chip Solutions
Cases of Automotive Ethernet Switch Chips

4.4 NXP
Layout of Automotive Network Business
Distribution of Manufacturing Factories
Trends in Automotive Communication Field: Acquisition of U.S. Startup Aviva Links to Layout ASA Standard SerDes Products
Summary of Automotive Ethernet Switch Chip Products and Performance Characteristics
S32J Series High-Performance Automotive Ethernet Switches and Network Controllers
Summary of Automotive Ethernet PHY Chip Products and Performance Characteristics
Automotive Ethernet 100BASE-T1 PHY Chips Supporting MACsec
Automotive Ethernet 1000BASE-T1 PHY Chips
Automotive Ethernet 1000BASE-T1 PHY Chips Supporting MACsec:
Automotive Ethernet 10BASE-T1S PHY Chips
CAN Transceiver Product Line
Selection Characteristics of CAN Transceivers
CAN FD Transceiver Products
Summary of FlexRay Transceiver Products and Performance Characteristics
LIN Transceiver Product Line
Summary of Multi-Channel LIN Transceiver Products and Performance Characteristics
Summary of Automotive DSRC and UWB Products and Performance Characteristics
Summary of Automotive Wi-Fi+Bluetooth Combination Chip Products and Performance Characteristics
Trimension NCJ29Dx Series

4.5 Broadcom
Layout and Revenue of Automotive Network Business
Summary of Automotive Ethernet Switch Chip Products and Performance Characteristics
Automotive Ethernet Switch Chip Products: 50G Automotive Ethernet Switches
Summary of Automotive Ethernet PHY Chip Products and Performance Characteristics
Automotive Ethernet PHY Chip Products
Automotive Ethernet Physical Layer BroadR-Reach Technology

4.6 Microchip
Layout of Automotive Network Business
Automotive SerDes Chips: Summary of Series Products and Performance Characteristics
Automotive SerDes Chips
Automotive SerDes Chips
Automotive Ethernet PHY Chips: Summary of Series Products and Performance Characteristics
Automotive Ethernet PHY Chips (1)
Automotive Ethernet PHY Chips (2)
Automotive Ethernet Switch Chips: Summary of Series Products and Performance Characteristics
Automotive Ethernet Switch Chips
PCIe 4.0 Switches (1)
PCIe 4.0 Switches (2)
CAN FD Solutions (1)
CAN FD Solutions (2)
CAN FD Solutions (3)

4.7 ROHM
Layout of Automotive Network Business
Summary of Automotive SerDes Series Products and Performance Characteristics
For Automotive Camera Modules
SerDes ICs for Automotive Multi-Screen Displays
Product Features and Advantages of Automotive SerDes ICs (1)
Product Features and Advantages of Automotive SerDes ICs (2)
Solutions of Automotive SerDes Chips in ADAS Cameras (1)
Solutions of Automotive SerDes Chips in ADAS Cameras (2)
Solutions of Automotive SerDes Chips in ADAS Cameras (3)
Automotive Multi-Screen Display Solutions (1)
Automotive Multi-Screen Display Solutions (2)
CAN/LIN Transceiver Product Line

4.8 inova
APIX Protocol Products
Summary of Automotive SerDes Series Products and Performance Characteristics
APIX 3 SerDes Chip Products
Automotive SerDes Display End Integration Solutions

4.9 KD Semiconductor
Summary of Optical Ethernet Chip Products and Performance Characteristics
Jointly Develop 10GBASE-AU Automotive Optical Transceivers Compliant with IEEE 802.3cz Standard
Launch Automotive-Grade Optical Fiber Data Transmission Solutions
Optical Communication Transceivers

Chapter 5 Research on Domestic Automotive Communication Chip Vendors
5.1 Motorcomm Electronic
Development and Layout of Automotive Chip Products
Research Projects in the Field of Automotive Communication
Automotive SerDes Chip Product Line
Automotive-Grade TSN Switch Products - Yushu Series (1)
Automotive-Grade TSN Switch Products - Yushu Series (2)
Automotive Ethernet PHY Chip Product Line
Automotive Ethernet PHY Chip Solutions (1)
Automotive Ethernet PHY Chip Solutions (2)
Comparison of 100Mbps Automotive Ethernet PHY Chips with Competitors from International Manufacturers
Comparison of 1000Mbps Automotive Ethernet PHY Chips with Competitors from International Manufacturers
Per-Vehicle Value and Cost of Automotive Ethernet PHY Chips

5.2 TASSON
Layout of Automotive Communication Products
Automotive Ethernet TSN Switch Chip Product Line
Automotive Communication Chip Solutions (1)
Automotive Communication Chip Solutions (2)
Application Cases of Automotive TSN Switch Chips

5.3 HingeTech
Summary of Automotive Optical Communication Series Products and Performance Characteristics 
Automotive Optical Fiber Network Communication Architecture
Configuration Scheme of High-Speed Optical Fiber TSN Centralized Architecture
Physical Diagram of EEA Optical Communication Architecture Based on Optical Modules
Optoelectronic Hybrid Central Gateway

5.4 Realtek
Layout of Automotive Chip Products
Automotive Ethernet Switch Chip Product Line
RTL9047AA-VC Automotive Ethernet Switch
Automotive Ethernet PHY Chip Product Line
Automotive Ethernet Solutions

5.5 Beijing Neuron Network Technology Co., Ltd.
Layout of Automotive Communication Products
Automotive Ethernet TSN Switch Chip Product Line
AUTBUS Chip Product Line
Automotive Communication Technology: AUTBUS Technology
Automotive Ethernet Chip Solutions
Automotive Ethernet Chip Solutions

5.6 JLSemi
ASA-ML Protocol Products: High-Speed ASA Moon Link Product Solutions
Automotive Ethernet Communication Chip Product Line
Core Technologies of Automotive Communication Chips
Automotive Ethernet PHY Chip Solutions
Summary of Automotive SerDes Series Products and Performance Characteristics
Automotive SerDes Chip Solutions: Automotive High-Speed SerDes Products Based on ASA Protocol

5.7 Ingenic
Automotive Communication Chip Product Line
Chip Production Process Manufacturers
Automotive Network Transmission Solutions (1)
Automotive Network Transmission Solutions (2)
Automotive Network Transmission Solutions (3)

5.8 Poncan Semiconductor
Summary of Optical PON Chip Products and Performance Characteristics
TS-PON Technology (1)
TS-PON Technology (2)
TS-PON Technology (3)
TS-PON Gen2 Chips
TS-PON Gen1 Chips
SoC Chips of TS-PON Technology
SoC Chips of TS-PON Gen1 Technology

5.9 Kungao Micro
Summary of utomotive PHY Chips and Gateway Chip Products and Performance Characteristics
Automotive Ethernet PHY Chips
Summary of Automotive TSN Switch Chip  Products and Performance Characteristics
Next-Generation Automotive TSN Switch Chips
Automotive Ethernet Chip Solutions

5.10 Norelsys Semiconductor
HSMT Standard Automotive SerDes Product Solutions
Summary of Automotive SerDes Series Products and Performance Characteristics
Cooperation with Novosense Microelectronics in Chip Receiving and Parsing Ends
One-Stop SerDes Solutions from Cameras to 10 Screens (CAM+Display)
HSMT Standard 12.8Gbps Automotive SerDes Solutions (1)
HSMT Standard 12.8Gbps Automotive SerDes Solutions (2)
Three Certifications

5.11 Rsemi
Summary of Automotive SerDes Series Products and Performance Characteristics
32Gbps High-Performance Automotive Display SerDes Chips
Jointly Released G-T02 Chip with GAC Group
R-LinC Six-in-One Deserializer Chip Solutions
R-LinC Two-in-One Serializer Chip Solutions
With Sony Semiconductor: "Intelligent Driving 5V Super Vision" Solution with Integrated Automotive SerDes Sensor End

5.12 VelinkTech
Summary of Automotive SerDes Series Products and Performance Characteristics
Automotive SerDes Products (1)
Automotive SerDes Products (2)
Cooperation with Fullhan Microelectronics: ISP + MIPI A-PHY 2-in-1 SoC Chip
Cooperation with SiEngine Technology and Axera: Intelligent Driving and Intelligent Cockpit Solutions

5.13 AI Micron
Summary of Automotive SerDes Chip Products and Performance Characteristics
Development of AHDL-SerDes Chips
ADHL Protocol
List of Application Products of HDL-SerDes Chips
Core High-Definition Automotive Video Transmission SerDes Chips
3rd Generation AHDL Protocol Product: 20Gbps Automotive-Grade SerDes Chip

5.14 Lontium Semiconductor
Summary of Automotive SerDes Chip Products and Performance Characteristics
Automotive SerDes Chips (1)
Automotive SerDes Chips (2)
Automotive SerDes Chips: Front Dual 8MP Camera ADAS Solution and Automotive 4K RGB888 @60Hz Display Solution
Automotive SerDes Chips: Display Solution

5.15 OmniVision Group
Summary of Automotive SerDes Chip Products and Performance Characteristics
OmniVision Group: 2Gbps Automotive Camera Video Serializer/Deserializer

5.16 SIMCHIP
Serializer/Deserializer (SerDes) Chips
Product Reliability Verification

5.17 Meritech
Automotive SerDes Chipset Product Solutions
Automotive SerDes Solutions: ADAS and Displays

5.18 Novosense Microelectronics
Layout of Automotive Intelligent Chips
HSMT Standard Automotive SerDes Product Solutions

5.19 SITCORES
Development Route of LIN Transceiver Chips
Development Route of CAN Transceiver Chips
Typical Automotive CAN/CAN FD Application Solutions (1)
Typical Automotive CAN/CAN FD Application Solutions (2)
Typical Automotive CAN/CAN FD Application Solutions (3)

Next-generation Central and Zonal Communication Network Topology and Chip Industry Research Report, 2025

The automotive E/E architecture is evolving towards a "central computing + zonal control" architecture, where the central computing platform is responsible for high-computing-power tasks, and zonal co...

Vehicle-road-cloud Integration and C-V2X Industry Research Report, 2025

Vehicle-side C-V2X Application Scenarios: Transition from R16 to R17, Providing a Communication Base for High-level Autonomous Driving, with the C-V2X On-board Explosion Period Approaching In 2024, t...

Intelligent Cockpit Patent Analysis Report, 2025

Patent Trend: Three Major Directions of Intelligent Cockpits in 2025 This report explores the development trends of cutting-edge intelligent cockpits from the perspective of patents. The research sco...

Smart Car Information Security (Cybersecurity and Data Security) Research Report, 2025

Research on Automotive Information Security: AI Fusion Intelligent Protection and Ecological Collaboration Ensure Cybersecurity and Data Security At present, what are the security risks faced by inte...

New Energy Vehicle 800-1000V High-Voltage Architecture and Supply Chain Research Report, 2025

Research on 800-1000V Architecture: to be installed in over 7 million vehicles in 2030, marking the arrival of the era of full-domain high voltage and megawatt supercharging. In 2025, the 800-1000V h...

Foreign Tier 1 ADAS Suppliers Industry Research Report 2025

Research on Overseas Tier 1 ADAS Suppliers: Three Paths for Foreign Enterprises to Transfer to NOA Foreign Tier 1 ADAS suppliers are obviously lagging behind in the field of NOA. In 2024, Aptiv (2.6...

VLA Large Model Applications in Automotive and Robotics Research Report, 2025

ResearchInChina releases "VLA Large Model Applications in Automotive and Robotics Research Report, 2025": The report summarizes and analyzes the technical origin, development stages, application cases...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2025

ResearchInChina releases the "OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2025", which sorts out iterative development context of mainstream automakers in terms of infota...

Autonomous Driving SoC Research Report, 2025

High-level intelligent driving penetration continues to increase, with large-scale upgrading of intelligent driving SoC in 2025 In 2024, the total sales volume of domestic passenger cars in China was...

China Passenger Car HUD Industry Report, 2025

ResearchInChina released the "China Passenger Car HUD Industry Report, 2025", which sorts out the HUD installation situation, the dynamics of upstream, midstream and downstream manufacturers in the HU...

ADAS and Autonomous Driving Tier 1 Suppliers Research Report, 2025 – Chinese Companies

ADAS and Autonomous Driving Tier 1 Suppliers Research Report, 2025 – Chinese Companies Research on Domestic ADAS Tier 1 Suppliers: Seven Development Trends in the Era of Assisted Driving 2.0 In the ...

Automotive ADAS Camera Report, 2025

①In terms of the amount of installed data, installations of side-view cameras maintain a growth rate of over 90%From January to May 2025, ADAS cameras (statistical scope: front-view, side-view, surrou...

Body (Zone) Domain Controller and Chip Industry Research Report,2025

Body (Zone)  Domain Research: ZCU Installation Exceeds 2 Million Units, Evolving Towards a "Plug-and-Play" Modular Platform The body (zone) domain covers BCM (Body Control Module), BDC (Body Dom...

Automotive Cockpit Domain Controller Research Report, 2025

Cockpit domain controller research: three cockpit domain controller architectures for AI Three layout solutions for cockpit domain controllers for deep AI empowerment As intelligent cockpit tran...

China Passenger Car Electronic Control Suspension Industry Research Report, 2025

Electronic control suspension research: air springs evolve from single chamber to dual chambers, CDC evolves from single valve to dual valves ResearchInChina released  "China Passenger Car Elect...

Automotive XR Industry Report, 2025

Automotive XR industry research: automotive XR application is still in its infancy, and some OEMs have already made forward-looking layout  The Automotive XR Industry Report, 2025, re...

Intelligent Driving Simulation and World Model Research Report, 2025

1. The world model brings innovation to intelligent driving simulation In the advancement towards L3 and higher-level autonomous driving, the development of end-to-end technology has raised higher re...

Autonomous Driving Map (HD/LD/SD MAP, Online Reconstruction, Real-time Generative Map) Industry Report 2025

Research on Autonomous Driving Maps: Evolve from Recording the Past to Previewing the Future with "Real-time Generative Maps" "Mapless NOA" has become the mainstream solution for autonomous driving s...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号