Prospective Study on L3 Intelligent Driving Technology of OEMs and Tier 1 Suppliers, 2025
  • Nov.2025
  • Hard Copy
  • USD $4,000
  • Pages:290
  • Single User License
    (PDF Unprintable)       
  • USD $3,800
  • Code: DTT008
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $5,700
  • Hard Copy + Single User License
  • USD $4,200
      

L3 Research: The Window of Opportunity Has Arrived - Eight Trends in L3 Layout of OEMs and Tier 1 Suppliers

Through in-depth research on 15 OEMs (including 8 Chinese and 7 foreign OEMs) and 9 Tier 1 suppliers (covering chips, lidar, domain controllers, ADAS, etc.), ResearchInChina analyzes the core layout of L3 intelligent driving of the two groups. For OEMs, this report comprehensively combs through their L3 intelligent vehicle development strategies, key launch nodes, and first L3 models, as well as sensor hardware solutions, intelligent driving chip selection, technology path planning, and redundancy strategy design. For Tier 1 suppliers, it focuses on exploring the R&D and implementation progress of their L3 intelligent driving products. Based on the above research, it finally summarizes eight major development trends of L3 intelligent driving in the Chinese market over the next 3 years.    

Currently, urban NOA has been extended to vehicle models priced at RMB150,000. The competitive barrier disappears and industry homogenization intensifies. At this time, L3 has become a key breakthrough for OEMs to compete for users and achieve brand upgrading. Only by making breakthroughs in L3 can OEMs meet users' high-level demands for "more worry-free and safer" driving, and establish differentiated advantages. L3 is not only a touchstone for technical strength but also an amplifier of brand value. As a crucial step towards true autonomous driving, L3 needs to overcome challenges such as regulatory compliance and advanced sensor fusion, and its reliability directly reflects OEMs' technical capabilities. OEMs that take the lead in mass-producing L3 can quickly establish labels of "technological leadership" and "high-end intelligence", drive up the value of the full range of their models, and widen the gap with competitors.  

In Geely Zeekr’s case, its intelligent driving evolution path clearly points to L3: launched a self-developed full-stack intelligent driving system in December 2023, realizing highway NOA and APA; fully rolled out mapfree urban NOA in December 2024; will implement Door-to-Door (D2D) function in June 2026. Making breakthroughs in L3 and L4 is the core direction of its next technical evolution.  

   
Trend 1: Consumers’ Demand for Higher-level Intelligent Driving Functions Is Reshaping the Market Structure, with 33% of Consumers Hoping to Upgrade Urban NOA to L3/L4 Functions.

From the data of newly launched vehicles, the installation of intelligent driving in passenger cars in China featured a greatly polarized pattern from 2023 to 2025: L2.5/L2.9 high-level intelligent driving functions enjoyed leapfrog growth, while traditional L1-L2+ intelligent driving functions continued to decline, clearly reflecting the trend of faster industry intelligence and iteration. In 2023, L2.5 and L2.9 intelligent driving were still niche configurations in the market, with installation rates of only 4.57% and 3.3% in newly launched models, respectively. However, from January to April 2025, both boomed: the proportion of new cars equipped with L2.5 intelligent driving soared to 34.8%, and those with L2.9 even took a 34.82% share, showing a very high market penetration. In sharp contrast, the installation rate of traditional L1-L2+ intelligent driving functions was on the decline during this period. This polarization trend clearly indicates that consumers' preference for higher-level intelligent driving functions has begun to reshape the market supply structure, and high-level intelligent driving is gradually becoming the core focus of competition in the new car market.         

The core driving force behind this trend lies in faster implementation of urban NOA and highway NOA functions. These two types of functions are not only key carriers for autonomous driving technology to move from "concept" to "practical application" but also assume the important role of "consumer education". In high-frequency scenarios such as daily commuting and long-distance driving, they allow consumers to intuitively perceive the value of high-level intelligent driving and gradually establish cognition and trust in the technology. The demand closed loop of "practical use - satisfaction - desire for upgrading" further catalyzes users' expectations for higher-level intelligent driving.    

Moreover, as users have long "coexisted" with ADAS, they have gradually figured out the capability boundaries of existing intelligent driving and have built up basic trust. However, the functional ceiling of L1-L2 intelligent driving, e.g., difficult to cope with complex urban road conditions, is about to be reached, and this limitation is continuously encouraging user demand to shift to higher-level intelligent driving.     

The research data from the China Auto Consumer Insights 2025 by McKinsey directly confirms the positive cycle of "technology penetration - consumer recognition". Compared with 2023, consumers' acceptance and satisfaction with autonomous driving functions have significantly improved. Specifically for core functions, 46% of users were satisfied with the current urban NOA in 2024, and 33% of urban NOA users clearly hoped to upgrade the existing urban NOA to L3/L4.  


Trend 2: From the Supply Side, the Window of Opportunity Brought by L3 Is Clear, Multiple Chinese OEMs Have Taken the Period from 2025 to 2027 as a Critical Phase for Mass Production and Installation of L3 Intelligent Driving, and Pre-embedded Hardware Becomes the Mainstream Strategy.   

From the supply side, the window of opportunity for commercialization of L3 intelligent driving is clear. Leading OEMs such as NIO, Xpeng, Geely, and Huawei-affiliated OEMs have regarded 2025-2026 as the critical period for mass production. Pre-embedded hardware has become the mainstream industry strategy: by pre-equipping components such as lidar and high-compute chips, they can quickly activate functions to win a place and gain first-mover advantages after regulatory relaxation.     

Their commercial implementation follows a clear path of "highway → urban area", "closed → open", and "business → consumer". Policy breakthroughs and cost reduction constitute a dual engine: in 2025, Beijing and Shanghai have explicitly defined the liability division for highway L3 accidents, and highway L3 functions of players such as Huawei and Xpeng have been delivered for production vehicles; the significant reduction in cost of hardware such as lidar has paved the way for technology popularization. Wherein, highway scenarios have become the first "test field" to implement L3 due to highly structured roads and easy unification of regulations.   

Although the consumer market still needs to break through the bottlenecks of user trust and cost sensitivity, as the industry chain matures, it is expected that L3 models will enter the mid-range price segment in the next 3 years. The concentrated mass production of multiple OEMs during 2025-2026 indicate that L3 technology has entered a new phase of "large-scale commercial implementation" from "testing and verification".   

Trend 3: L3 and L4 Dual-line Layout: OEMs' Technical Collaboration and Ecosystem Competition

Some leading OEMs are betting on both L3 and L4, which is essentially a deep binding at the technology, capital, and strategy levels. By means of two-way technical enablement and commercial complementarity, they build an irreproducible competitive barrier.    

At the technology level, L3 and L4 form a "symbiotic evolution" closed loop. Both are highly universal in hardware such as lidar and high-level intelligent driving chips, as well as in automotive redundancy design, with interoperable core capabilities. L3 production vehicles can collect a mass of edge case data such as "takeover" scenarios, becoming a "training library" for L4 algorithms. The high-level algorithms of L4, after being downscaled to designated scenarios, can directly improve the performance reliability of L3. This synergy of "data feedback + technology downscaling" enables the two technology paths to achieve an iteration efficiency of 1+1>2.   

At the commercial level, both form an ecosystem combination of "short-term blood transfusion + long-term occupation". L3 quickly recovers funds and verifies the market through private car sales, transfusing L4 R&D. L4 targets the Robotaxi market worth RMB1 trillion and lays out the future mobility ecosystem. More importantly, private cars and Robotaxi fleets can share resources such as HD maps and cloud platforms to form operational synergy. OEMs that take the lead in overcoming L4 are expected to become the definers of the future mobility ecosystem. This dual-line strategy is not only a pragmatic choice to reduce technical R&D risks but also a strategic layout to have a say in the intelligent driving era.   

Trend 4: L3 Technology Path Shows a "Three-legged Stool" Pattern: Independent R&D, Dual-track (Co-development + Independent R&D), and External Suppliers. 

In China, L3 intelligent driving technology path has formed a "three-legged stool" pattern of "full-stack independent R&D, co-development + independent R&D, and external cooperation". This is essentially a differentiated choice of OEMs based on their technical reserves, capital strength, and strategic rhythm - seeking the optimal balance between "technical sovereignty" and "commercial efficiency".   

Full-stack Independent R&D: Exchange high investment for long-term technical moat

Leading OEMs such as NIO, Xpeng, Li Auto, and Geely have anchored full-stack independent R&D, the core of which is to master the full-link dominance of underlying hardware (such as self-developed chip adaptation) and top-layer algorithms (end-to-end large models). This model can build an exclusive data closed loop, continuously collect edge data such as "takeover" scenarios via production vehicles to reversely feed algorithm iteration, and build an irreproducible technical barrier. However, the cost is high, and there are technical trial and error and cycle risks.  

Co-development + Independent R&D: Balance independent control and R&D efficiency

Cases such as SAIC IM's co-development with Momenta and Dongfeng Voyah's "strategy implementation by brand" (independent R&D for Taishan + Dreamer equipped with Huawei's solution) represent the flexibility of the mixed route. Its core logic is "independent R&D or co-development of core technologies + outsourcing of the non-core": OEMs control key links such as decision algorithms, and entrust heavy-asset links such as perception fusion and data annotation to professional partners. This not only avoids resource waste of fully independent R&D but also gets rid of the risk of depending on single ones. This model has become the preferred choice for most traditional OEMs. For example, BYD, while independently developing "God’s Eye", works with Momenta to implement high-level functions.   

Choosing External Suppliers: Use mature solutions to take a place quickly and shorten L3 R&D cycle

Typified by Huawei's cooperation with OEMs, this model quickly enters the market by virtue of "packaged solutions". With its ADS 4.0 system featuring integration of "chip - algorithm - redundancy architecture", Huawei covers more than 7 OEMs. It empowers JAC STELATO S800 to implement highway L3 intelligent driving and build a flagship intelligent model.     

Trend 5: Multi-channel Lidar Becomes an Important Choice for OEMs to Lay out L3 Intelligent Driving and Ensure Safety Redundancy.

Global L3 intelligent driving sensor solutions show a clear differentiation: only Tesla and Xpeng adhere to the vision-only route, while other mainstream OEMs inside and outside China and pilot manufacturers take lidar as the core configuration. Chinese ones include Huawei-affiliated OEMs, Geely, GAC, SAIC IM, and NIO; foreign ones such as BMW, Mercedes-Benz, Honda that have piloted L3, and European and American giants that have not conducted road tests. 

Markus Sch?fer, CTO of Mercedes-Benz, pointed out that L3 requires multi-sensor redundancy to ensure safety, and as vehicle speed increases, higher-performance lidar is needed for long-distance small obstacle detection, reserving sufficient processing time for the system and the driver. Chen Xiaozhi, Chief AI Technology Officer of Zhuoyu Technology, also emphasized that the hardware safety redundancy of L3 requires sensor complementarity (not just relying on algorithms), and the core value of lidar is to provide safety redundancy.

As the core indicator of lidar resolution (representing the number of vertical laser beams), the number of channels directly matches the upgrade of intelligent driving levels: early 16-channel lidars are suitable for low-speed scenarios, the 32/64-channel serve low-to-mid level ADAS, and currently the 128-channel have become a mainstream automotive solution. L3 models require ≥128-channel lidars, and the mainstream configuration has been upgraded to 192-channel, 520-channel, or even 700-channel. The dense point cloud brought by multi-channel lidars can realize accurate recognition of small obstacles 170 meters away, which is an essential safety requirement for L3 in the scenario of liability transfer.  

Trend 6: The Computing Power Required for L3 Intelligent Driving Shows an Exponential Leap, with 1000TOPS Becoming the Mainstream Threshold. 

The computing power required for autonomous driving is not blindly piled up, but is deeply bound to levels, scenarios, and algorithm models. L2 deals with basic scenarios such as lane keeping and adaptive cruise control, and ≥50TOPS dense computing power is sufficient. Excessive stacking will only lead to resource waste and high cost. 

Due to the need to take on the main driving responsibility, L3 needs to cope with complex urban traffic, various traffic participants, dynamic environmental changes and other scenarios. It requires large-scale neural network models for real-time reasoning. The expansion of end-to-end large model parameters results in the demand for higher vehicle computing power. After combining end-to-end technology and VLM into VLA, the vehicle-side model parameters become larger. It not only needs efficient real-time reasoning capability but also has the ability to recognize the complex world and give suggestions. Deploying VLA models will pose quite high requirements for vehicle chip hardware. The demand for sparse computing power directly jumps to 1000-2000TOPS level, and the dense computing power threshold rises to ≥200TOPS.

The sparse acceleration ratio varies in scenarios. For structured roads such as highways, the proportion of effective information exceeds 50%, the sparsity is low, the acceleration ratio is only 2-3 times, and the equivalent computing power of 400-600TOPS is sufficient. For long-tail scenarios of complex urban road conditions, the proportion of effective information is lower than 10%, the sparsity is high, the acceleration ratio can reach 8-10 times, and the equivalent computing power can be increased to 1600-2000TOPS, which accurately matches the computing power requirements of complex environments.  

Trend 7: Device-cloud Collaboration, the Core Architecture for Breaking through Computing Power Constraints in L3 intelligent Driving Layout

"Device-cloud collaboration" has become a consensual choice for mainstream OEMs laying out L3 intelligent driving to break through computing power. Its essence is to solve the core contradiction between the performance requirements of large models and the limitations of vehicle computing power through the division of labor of building capabilities in the cloud and implementing applications on vehicles. Xpeng’s technical practice is a typical example of this path.    

The underlying technical logic is driven by the Scaling Law: the number of parameters and data volume directly determine the performance of models, but vehicle computing power is difficult to support the operation of 10-billion-parameter large models. By training models with 1 billion to 72 billion parameters and feeding more than 20 million clips of video data, Xpeng's team first verified that this law is still available in an autonomous driving VLA model. The 72-billion-parameter cloud large model can accurately handle complex scenarios, and then generate a small model suitable for vehicles using distillation technology, which can preserve core capabilities to the greatest extent possible and break through computing power constraints.      

The "Xpeng World Foundation Model" released in April 2025 is the carrier of implementing this logic. As a cross-terminal "super parent body", it realizes full-link production through the "cloud model factory" built by Xpeng: forming a closed loop from multi-modal pre-training, reinforcement learning post-training, to model distillation and vehicle-end deployment. Relying on the 10,000-card intelligent computing cluster, the iteration cycle is compressed to an average of once every 5 days.    

Its evolution core lies in the "Dual Loop Collaboration Mechanism": the Inner Loop completes the efficient transfer of large model capabilities to the vehicle-end in three stages of "pre-training - reinforcement learning - distillation"; the Outer Loop continuously reversely feeds cloud model iteration relying on the perception data of real vehicles, user feedback and extreme cases, completely solving the problem of disconnection between simulation and real scenarios. This closed loop of "training intelligence in the cloud, using intelligence at the vehicle-end, and returning intelligence with data" not only enables a small vehicle-end model to have generalization capabilities close to that of large models but also realizes continuous self-evolution of intelligent driving systems, laying a technical foundation for safe implementation of L3 and advancement to L4.

Trend 8: L3 Intelligent Driving Moves Towards End-to-end 2.0, and VLA Becomes One of the Mainstream Routes to Break Through Experience Bottlenecks for L3 Intelligent Driving.

L3 intelligent driving is moving from "modular splicing" to the "end-to-end 2.0" era. The core evolution logic is the deepening of multi-modal fusion. The combination of "VLA (Vision-Language-Action model) + device-cloud collaboration + world model" is becoming the mainstream path to break through technical limitations and realize commercial use. SAIC IM's three-stage evolution route accurately embodies this leap process from "technology availability" to "experience reliability". 

2025 is the "foundation building period": by implementing the one-model end-to-end (E2E) architecture, break the module barriers of traditional perception, decision, and control, and realize lossless information transmission and global optimization, with L3 having been 90% production-ready in terms of technical maturity. This step solves the core sore points of "information loss and accumulated errors" in modular systems and lays a solid foundation for high-level intelligent driving. 
2026 enters the "capability leap period": introducing multi-modal large models (E2E+VLM) on the basis of end-to-end enables the system to have initial scenario semantic understanding capabilities, integrating visual perception, voice commands, and map information to make decisions, instead of relying solely on sensor data. This upgrade directly makes up for key shortcomings in L3 commercialization, making it meet the mass production condition of "high reliability". 
2027 and beyond move towards the "ultimate form period": evolve into full-link multi-modal end-to-end (VLA), and realize a "one-stop" closed loop from multi-modal input to driving action output. Models can simultaneously recognize traffic signs, understand user commands, analyze complex road conditions, and output human-like coherent decisions, achieving the core user value of "low takeover rate and high trust".  

SAIC IM's evolution path confirms the industry consensus: the implementation of L3 is not only the stacking of computing power and sensors but also the iteration of architectural logic—from "execution automation" of a single modality to "cognitive intelligence" of multi-modal fusion, and VLA is the ultimate carrier of this process.

From the iteration of consumer demand to the strategic positioning at the supply side, from the differentiation of technology paths to the upgrading of hardware computing power, the eight major development trends of L3 intelligent driving Are essentially a panoramic microcosm of the industry's leap from "intelligence 1.0" to "Intelligence 2.0". It is no longer a breakthrough in a single technology, but a systematic project of multi-dimensional collaboration of "demand - technology - commerce – ecosystem". In the future, L3 will not only be a "core weapon" for OEMs to break through homogenization and achieve brand upgrading but also a "key bridge" connecting L2 popularization and L4 ecosystem. When production vehicle models are intensively launched during 2025-2027, and the regulatory dividends of highway scenarios extend to urban areas, L3 intelligent driving will no longer be a synonym for "high-end configuration", but a "tipping point" that redefine automobile value and opens up a new smart mobility ecosystem.  

1 Commercialization Progress and Policy Interpretation of L3 Conditional Autonomous Driving
1.1 Definition and Classification Standards of L3 Conditional Autonomous Driving
International Classification Standards for L3 Intelligent Driving: SAE J3016 (1)
International Classification Standards for L3 Intelligent Driving: SAE J3016 (2)
China National Standard (GB/T 40429-2021): Definition of L3 Conditional Autonomous Driving, Requirements for L3 Systems, Interpretation of User Roles
Differences between L3 Intelligent Driving and L2 Assisted Driving (1)
Differences between L3 Intelligent Driving and L2 Assisted Driving (2)
Differences between L3 Intelligent Driving and L2 Assisted Driving (3)
Differences between L3 Intelligent Driving and L2 Assisted Driving (4): Responsibility Transfer Logic between "System Driving" and "Driver Takeover"
Differences between L3 Intelligent Driving and L2 Assisted Driving (5): Driver Status Monitoring System 1
Differences between L3 Intelligent Driving and L2 Assisted Driving (5): Driver Status Monitoring System 2
Differences between L3 Intelligent Driving and L2 Assisted Driving (5): Driver Status Monitoring System
Conceptual Design of L3 Autonomous Driving System Solution (1): Operational Design Domain (ODD)
Conceptual Design of L3 Autonomous Driving System Solution (2): Core Functional Scenarios
Full-Process System for Autonomous Driving Safety Assessment: Safety Assessment during Autonomous Driving Function Activation
Full-Process System for Autonomous Driving Safety Assessment: Safety Assessment during Autonomous Driving Function Operation

1.2 Detailed Explanation of National Laws, Regulations and Policies on L3 Conditional Autonomous Driving
Analysis of Laws, Regulations and Policies on L3 Conditional Autonomous Driving: Overview of National Laws and Policies (1)
Analysis of Laws, Regulations and Policies on L3 Conditional Autonomous Driving: Overview of National Laws and Policies (2)
Analysis of Laws, Regulations and Policies on L3 Conditional Autonomous Driving: Local Pilot Policies and Practices
Policy Comparison among Wuhan, Beijing and Shenzhen: Liability Definition for L3 Traffic Accidents
Policy Comparison among Wuhan, Beijing and Shenzhen: L3 Road Access Process
"Work Plan for Stabilizing Growth in the Automobile Industry (2025-2026)": Clearly Stipulates "Conditional Approval of Production Access for L3 Models"
First Batch of 9 Automakers Admitted to the Pilot Program for Access and Road Operation of L3 Intelligent Connected Vehicles
First Batch of L3 Conditional Autonomous Driving Access Vehicle List
China's Laws and Regulations on L3 Conditional Autonomous Driving: Interpretation of "Notice of the Four Ministries and Commissions on Carrying out the Pilot Program for Access and Road Operation of Intelligent Connected Vehicles" (1)
China's Laws and Regulations on L3 Conditional Autonomous Driving: Interpretation of "Notice of the Four Ministries and Commissions on Carrying out the Pilot Program for Access and Road Operation of Intelligent Connected Vehicles" (2)
China's Laws and Regulations on L3 Conditional Autonomous Driving: Interpretation of "Notice of the Four Ministries and Commissions on Carrying out the Pilot Program for Access and Road Operation of Intelligent Connected Vehicles" (3)
China's Laws and Regulations on L3 Conditional Autonomous Driving: Interpretation of "Notice of the Four Ministries and Commissions on Carrying out the Pilot Program for Access and Road Operation of Intelligent Connected Vehicles" (4)
Summary of Insurance-Related Laws, Regulations, Policies and Standards for L3 Conditional Autonomous Driving

1.3 National Standards for L3 Conditional Autonomous Driving
Interpretation of General Technical Requirements for Autonomous Driving Systems of Intelligent Connected Vehicles (National Standard)
Analysis of Safety Bottom-Line Process for ADS Dynamic Driving Task Backup in GB/T 44721-2024
Human-Machine Interaction in GB/T 44721-2024: "Activation" Logic of ADS
Human-Machine Interaction in GB/T 44721-2024: "Exit" and "Intervention" Logic of ADS
Human-Machine Interaction in GB/T 44721-2024: Core Prompts for Different States of ADS
Technical Specifications for Accident Definition and Data Collaboration of L3 Conditional Autonomous Driving Issued by CAAM
Interpretation of GB 44497-2024 Standard (1): Autonomous Driving Data Recording System is an Indispensable Technical Basis for Accident Identification
Interpretation of GB 44497-2024 Standard (2): Comprehensive Comparison between Type I and Type II Autonomous Driving Data Recording Systems
Interpretation of GB 44497-2024 Standard (3): Full Link of "Event-Triggered" Data Recording
Interpretation of GB 44497-2024 Standard (4): Full Link of "Real-Time Continuous Recording" Data Recording

1.4 Global Autonomous Driving Policies and Regulations
Global Autonomous Driving Industry Has Witnessed Substantive Policy Promotion
The Czech Republic Becomes the Second Country in Europe After Germany to Allow L3 Autonomous Driving on Public Roads
Global Laws and Regulations on L3/L4 Autonomous Driving: Japan's "Road Traffic Act" Allows L4 Autonomous Driving Vehicles and Autonomous Driving Robots on the Road
Global Laws and Regulations on L3/L4 Autonomous Driving: Measures for the Construction of Autonomous Driving Environment in Japan
Global Laws and Regulations on L3/L4 Autonomous Driving: Development Goals of Autonomous Driving in Japan
Global Laws and Regulations on L3/L4 Autonomous Driving: Japan's RoAD to the L4 Project

1.5 L3 Core Threshold for L3 Implementation: Design and Value of Autonomous Driving Redundancy Systems
Failure Response Modes for Various Levels of Autonomous Driving
Single-Channel Systems Have Serious Safety Hazards for L3 Autonomous Driving
A Reasonably Designed Redundant Architecture Can Enhance the Overall Performance and Safety of L3 Systems
L3 Autonomous Driving Shifts from Single-Channel Architecture to Multi-Channel Architecture
Conceptual Design of L3 Autonomous Driving System Solution: Communication Redundancy
Conceptual Design of L3 Autonomous Driving System Solution: Analysis of Power Supply Redundancy Solution (1)
Conceptual Design of L3 Autonomous Driving System Solution: Analysis of Power Supply Redundancy Solution (2)
Conceptual Design of L3 Autonomous Driving System Solution: Controller Redundancy
Conceptual Design of L3 Autonomous Driving System Solution: Actuator Redundancy (1)
Conceptual Design of L3 Autonomous Driving System Solution: Actuator Redundancy (2)
L3 Intelligent Driving Redundancy

2 Benchmarking of Intelligent Driving Technology Routes for L3 Manufacturers and Industry Evolution Trends
International Intelligent Driving Market and L3 Market Penetration Rate
Penetration Rates of L2-L5 Autonomous Driving in China and Global Markets, 2025 - 2035E
Driving Forces for L3 Conditional Autonomous Driving (1)
Driving Forces for L3 Conditional Autonomous Driving (2)
Consumers' Demand for Higher-Level Intelligent Driving Functions is Reshaping the Market Structure
New Commercial Increment Brought by the Implementation of L3 Conditional Autonomous Driving (1)
New Commercial Increment Brought by the Implementation of L3 Conditional Autonomous Driving (2)
In 2025-2030, Strong Growth of L3 in China Market; the Revenue Potential of L3 in China Market is Expected to Reach 7 Billion USD by 2035
Policy + Technology Dual-Driver: China's L3/L4 Autonomous Driving Market Enters the Fast Lane of Large-Scale Commercialization, 2025-2030E
Synchronous Upgrades of Four Major Technical Modules Jointly Promote the Step-by-Step Implementation of Autonomous Driving from L3 to L5
Predictions of Industry Experts on the Development of L3 Conditional Autonomous Driving (1)
Predictions of Industry Experts on the Development of L3 Conditional Autonomous Driving (2)
Development Rhythm of L3 and L4 Intelligent Driving
Five Major Challenges for Large-Scale Implementation of L3
Technical Challenges of L3 Implementation (1)
Technical Challenges of L3 Implementation (2)
Technical Challenges of L3 Implementation (3)
Trend 1: Clear Window Period - Many Domestic OEMs Have Listed 2025-2027 as a Critical Phase for Mass Production and Installation of L3 Autonomous Driving; Hardware Pre-Embedding Has Become a Mainstream Strategy
Four Major Characteristics of Domestic Automakers' Layout of L3
Trend 2: Intensive Layout of L3 Autonomous Driving by International Camp is Triggering a Global Competition in Intelligence
Trend 3: Sensor Manufacturers, Computing Power Platforms and Intelligent Driving Algorithm Suppliers Collaborate to Promote the Large-Scale Implementation of L3 and Evolution towards L4 Autonomous Driving
Trend 4: Some Leading Automakers Adopt a Dual-Line Layout Strategy of L3 and L4, A Multiple Consideration at Technical, Capital and Strategic Levels (1)
Trend 4: Some Leading Automakers Adopt a Dual-Line Layout Strategy of L3 and L4, A Multiple Consideration at Technical, Capital and Strategic Levels (2)
Trend 5: L3 Technical Routes Present a "Three-Pillar" Pattern: Independent R&D, Dual-Track of Co-R&D + Independent R&D, External Suppliers (1)
Trend 5: L3 Technical Routes Present a "Three-Pillar" Pattern: Independent R&D, Dual-Track of Co-R&D + Independent R&D, External Suppliers (2)
Trend 5: L3 Technical Routes Present a "Three-Pillar" Pattern: Independent R&D, Dual-Track of Co-R&D + Independent R&D, External Suppliers (3)
Trend 6: Multi-Channel Lidar Has Become an Important Choice for OEMs to Layout L3 Intelligent Driving and Ensure Safety Redundancy (1)
Trend 6: Multi-Channel Lidar Has Become an Important Choice for OEMs to Layout L3 Intelligent Driving and Ensure Safety Redundancy (2)
Trend 7: The Computing Power Demand for L3 Intelligent Driving Shows an Exponential Leap; 1000 TOPS Has Become a Mainstream Threshold (1)
Trend 7: The Computing Power Demand for L3 Intelligent Driving Shows an Exponential Leap; 1000 TOPS Has Become a Mainstream Threshold (2)
Trend 8: The Upgrade of Intelligent Driving Levels Drives the Step-by-Step Growth of Demand for "Computing Power - Data - Training Resources"
Trend 9: "End-Cloud Collaboration" Has Become the Core Architecture for Most Automakers Layout L3 Intelligent Driving to Break Through the Constraints of Computing Power
Trend 10: L3 Intelligent Driving Moves Towards End-to-End 2.0; Automakers Collectively Bet on the "VLA + End-Cloud Collaboration + World Model" Architecture (1)
Trend 10: L3 Intelligent Driving Moves Towards End-to-End 2.0; Automakers Collectively Bet on the "VLA + End-Cloud Collaboration + World Model" Architecture (2)

3 L3 Intelligent Driving Products and Technologies of OEMs
3.1 Geely-ZEEKR
Geely Automobile Accelerates L3/L4 Layout: Driven by Independent R&D and Strategic Ecological Cooperation
At the Technical Evolution Level, L3 is the Core Key for ZEEKR's Next Breakthrough
Four Pillars of L3 Breakthrough: Collaborative Closed Loop of Data, AI Large Model, Simulation Technology and Computing Power
ZEEKR L3 Intelligent Driving: Hardware Layout
ZEEKR L3 Intelligent Driving: End-to-End Large Model
Differences in Development Concepts between L2, L3 and Above Autonomous Driving
ZEEKR 9X Glory: The First Model of ZEEKR L3 Implementation

3.2 SAIC-IM Motors
Full-Stack Layout Strategy for Autonomous Driving
Development Plan of L3 Autonomous Driving Technology
Technical Base for L2/L3/L4: Interpretation of End-to-End Large Model (1)
Technical Base for L2/L3/L4: Interpretation of End-to-End Large Model (2)
Technical Base for L2/L3/L4: Domain Controller and Sensor Hardware Configuration
Technical Base for L2/L3/L4: Safety Redundancy
Technical Base for L2/L3/L4: Digital Chassis (1)
Technical Base for L2/L3/L4: Digital Chassis (2)
Progress of Robotaxi Layout

3.3 XPeng Motors
L3 Layout Plan
Transformation Layout of "AI Defined Vehicle"
Launches Intelligent Driving Vehicles with L3 Computing Power
World Foundation Model (1)
World Foundation Model (2)
World Foundation Model (3)
Cloud Factory
G7 Ultra: The First AI Vehicle Equipped with L3 Computing Power Platform
L4 Autonomous Driving Plan: Officially Launching Pre-Installed Robotaxi in 2026

3.4 Li Auto
Accelerates L3/L4 Layout and Will Further Extend to AGI in the Future
Understanding of L3 Conditional Autonomous Driving
Evolution of Intelligent Driving Technology Route: VLA is Expected to Move Towards Higher-Level Autonomous Driving (1)
Evolution of Intelligent Driving Technology Route: VLA is Expected to Move Towards Higher-Level Autonomous Driving (2)
Core Technology of MindVLA

3.5 Huawei
Implementation Plan of L3/L4 Intelligent Driving in China
Solutions to Address Technical and Commercial Closed-Loop Challenges
Qiankun Intelligent Driving Comprehensive Safety System CAS 4.0
L3 Intelligent Driving: Analysis of Sensor Hardware Configuration (1)
L3 Intelligent Driving: Analysis of Sensor Hardware Configuration (2): High-Precision Solid-State Lidar
L3 Intelligent Driving: Analysis of Sensor Hardware Configuration (3): In-Cabin Laser Vision Limera
ADS 4.0 (1): WEWA Architecture
ADS 4.0 (2): WEWA Architecture
ADS 4.0 (3): Comparison between L3 Intelligent Driving Version and Autonomous Driving Version
ADS 4.0 (4): Comparison of Four Intelligent Driving Versions
L3 Intelligent Driving: Self-Developed AOS+ Launches Hybrid Redundant Architecture to Build Autonomous Driving Safety Base
Digital Chassis Engine XMC (1)
Digital Chassis Engine XMC (2): Core Advantages
L3 Intelligent Driving Mass-Produced Models: List of Huawei-Series Models Equipped with Huawei L3 Intelligent Driving Functions and Hardware Price Configuration

3.6 GAC Group
Product Layout Plan of L3/L4 Autonomous Driving (1)
Product Layout Plan of L3/L4 Autonomous Driving (2)
Robotaxi Layout
Construction of Computing Power Cluster
Evolution History of ADIGO System: Launching L3 Intelligent Driving System ADGO GSD in 2025
L3 Intelligent Driving Adopts a Dual-Track Strategy of "Independent R&D as the Mainstay + Cooperation as the Supplementary"
Adopts Multi-Brand Hierarchical Layout to Accelerate the Popularization of Intelligence
Technical Solution of L3 Intelligent Driving
Design of L3 Intelligent Driving System: Global Safety Technology
Design of L3 Intelligent Driving System: Dual Redundancy Design of Eight Key Systems
Design of L3 Intelligent Driving System: Active-Passive Integrated Safety (1)
Design of L3 Intelligent Driving System: Active-Passive Integrated Safety (2)
Design of L3 Intelligent Driving System: Battery Safety
Design of L3 Intelligent Driving System: Intelligent Chassis Safety
GAC Group Has Obtained Approval for the Pilot Program for Access and Road Operation of Intelligent Connected Vehicles, Becoming One of the First Batch of Automakers in China Approved to Carry Out L3 Autonomous Driving Road Operation Pilots

3.7 Voyah
Layout and Important Nodes of L3 Intelligent Driving
Technical Architecture of L3 Intelligent Driving: Tianyuan
Qingyun L3 Architecture
L3 Intelligent Driving System: Hardware Configuration
Analysis of Kunpeng L3 Intelligent Safety Driving System (1)
Analysis of Kunpeng L3 Intelligent Safety Driving System (2)

3.8 Changan Automobile
L3 Plan in Dubhe Plan 2.0
Leads the L3 Intelligent Driving Access List
Intelligent Driving Solution for L3 Models
L3 Road Test of Deepal in Chongqing
Layout of L4 Robotaxi 

3.9 BMW
L3 Layout
Future Mobility Development Center
Personal Pilot L3
Personal Pilot L3 ODD and Map Drawing
Redundancy Design of Personal Pilot L3 
L3 Multi-Modal Sensor Suite
New-Generation EE Architecture
Core of New-Generation EE Architecture: Four High-Performance Computers "Super Brain"
Other Designs of New EE Architecture

3.10 Mercedes-Benz
Committed to the R&D and Upgrade of L3 Autonomous Driving Technology
Introduction to DRIVE PILOT
Defined Boundaries of DRIVE PILOT: Operational Design Domain (ODD)
Sensor Configuration of DRIVE PILOT
Redundancy Design of DRIVE PILOT
Other L3 Designs
Formed a Multi-Line Intelligent Driving Path of L2, L3 and L4

3.11 Audi
Defined Boundaries of 3: Operational Design Domain (ODD)
Core Computing Architecture of L3: zFAS Computer Platform
Detailed Configuration Interpretation of zFAS
Overview of L3 Sensor Configuration
Analysis of L3 Sensor Configuration
L3 Chassis and Actuator Redundancy
Other L3 Designs

3.12 Stellantis
STLA AutoDrive 1.0
Technologies of STLA AutoDrive L3
Basic Architecture: STLA Brain
Collaborative Layout

3.13 Honda
SENSING Elite
Defined Boundaries of L3: Operational Design Domain (ODD)
Configuration of L3 Autonomous Driving System and Collaboration Logic Between Modules (1)
Configuration of L3 Autonomous Driving System and Collaboration Logic Between Modules (2)
Redundancy Design and Core Decision of L3
Overview of L3 Sensor Configuration
Overview of L3 Algorithm and Model Configuration
L3 Future Strategy

3.14 Rivian
Layout of L3 Autonomous Driving Platform
L3 Zonal E/E Architecture
L3 Sensor Configuration
L3 Computing Platform Configuration and Chassis Control
Software Algorithm Design of L3: Perception and Prediction
Software Algorithm Design of L3: Planning
Other L3 Designs

3.15 Tesla
Transformation of Future Strategy
Parameters of AI5 Chip
Paradigm Shift from Dual-Chip Redundancy to Single-Chip Integration
Key Technologies of AI5
Development Direction of FSD Model Training Process

3.16 Other Foreign Automakers
Overview of L3 Layout Plans for Other Automakers

4 L3 Intelligent Driving Products and Technologies of Tier 1 Suppliers

4.1 NVIDIA
Full-Stack L3 Autonomous Driving System Alpamayo
Technical Evolution Route of Alpamayo
Basic Architecture of Alpamayo (1)
Basic Architecture of Alpamayo (2)
Network Architecture of Alpamayo
Alpamayo Model Training Process Table
Alpamayo Model Training Process
Alpamayo L3 Architecture
Redundancy Design of Alpamayo L3 Architecture
Halos Overall Safety System

4.2 Horizon Robotics
Implementation Path of L3
Judgment on the Large-Scale Development of Various Levels of Intelligent Driving
Computing Power Demand and Products of L3
Mass Production Solution of L3

4.3 Qualcomm
Planning of Snapdragon Ride Platform
Flagship Cockpit-Driving Integration Chip Platform 8797
Parameter Configuration of Snapdragon 8797 Chip

4.4 Black Sesame Technologies
Introduction to Huashan A2000 Chip
Parameter Configuration of Huashan A2000 Chip
Architecture of Huashan A2000 Chip
Memory Architecture of Huashan A2000
Universal AI Toolchain BaRT for Huashan A2000
Future-Oriented Design of Huashan A2000
Redundancy Design of Safety Base

4.5 Hesai Technology
L3 Solution - Infinity Eye B
Parameters of Infinity Eye B ETX Long-Range Lidar
Innovative Technology of ETX Long-Range Lidar
Parameters of Infinity Eye B Second-Generation Solid-State Lidar FTX
The Fourth-Generation Chip

4.6 RoboSense
L3 Solution - EM4+E1
Parameter Configuration of Ultra-Long-Range Lidar EM4
Core Technical Features of EM4 Lidar for L3
Parameter Configuration of Blind-Spot Radar E1
Receiving and Processing SOC Chip
Application Cases of L3 Solution

4.7 Bosch
L3 Development Plan
Cooperates with CARIAD to Develop AI-Based L2/L3 Autonomous Driving Software Stack
Mainstream Path of High-Level Assisted Driving: One-Model End-to-End (1)
Mainstream Path of High-Level Assisted Driving: One-Model End-to-End (2)

4.8 Mobileye
Profile and Product Portfolio
Redefines Autonomous Driving into Four Levels from the Perspective of Consumer-Oriented Product
L3 Autonomous Driving Chips Will Achieve Mass Production in 2025, Promoting the Large-Scale Implementation of High-Level Intelligent Driving Technology
Comparison of EyeQ6H and EyeQ5H (1)
Comparison of EyeQ6H and EyeQ5H (2)
Full-Stack Autonomous Driving Product Portfolio Matrix for L1-L4 (1)
Full-Stack Autonomous Driving Product Portfolio Matrix for L1-L4 (2)
Sensor Hardware Configuration of L3 Intelligent Driving Products (Scenarios Such as Highways/Cities/Countryside)
Comparison of Mass-Produced Customers, Mass-Produced Models and Target Markets of L2/L3 Intelligent Driving Products
Algorithm Architecture of Chauffeur 
Product Evolution Route Plan: It is Expected That CH (L3) Products Will Account for 10% of the Company's Total Revenue in the Second Phase
Cooperates with Volkswagen to Launch Its First L4 Autonomous Vehicle (1)
Cooperates with Volkswagen to Launch Its First L4 Autonomous Vehicle (2)

4.9 Zhuoyu Technology
Time Planning for the Implementation of L3 Intelligent Driving
VLA Large Model and L3/L4 Intelligent Driving Plan
Evolution Trend of Intelligent Driving Products
Layout of L3 In-vehicle Hardware Products: Inertial Navigation Three-Camera and Lidar Assembly
Layout of L3 In-vehicle Hardware Products: Intelligent Driving Domain Controller

Prospective Study on L3 Intelligent Driving Technology of OEMs and Tier 1 Suppliers, 2025

L3 Research: The Window of Opportunity Has Arrived - Eight Trends in L3 Layout of OEMs and Tier 1 Suppliers Through in-depth research on 15 OEMs (including 8 Chinese and 7 foreign OEMs) and 9 Tier 1 ...

China Commercial Vehicle IoV and Intelligent Cockpit Industry Research Report 2025

Commercial Vehicle IoV and Cockpit Research: The Third Wave of Passenger Car/Commercial Vehicle Technology Integration Arrives, and T-Box Integrates e-Call and 15.6-inch for Vehicles I. The third wav...

Intelligent Vehicle Electronic and Electrical Architecture (EEA) and Technology Supply Chain Construction Strategy Research Report, 2025

E/E Architecture Research: 24 OEMs Deploy Innovative Products from Platform Architectures to Technical Selling Points According to statistics from ResearchInChina, 802,000 passenger cars with domain...

Research Report on Intelligent Vehicle Cross-Domain Integration Strategies and Innovative Function Scenarios, 2025

Cross-Domain Integration Strategy Research: Automakers' Competition Extends to Cross-Domain Innovative Function Scenarios such as Cockpit-Driving, Powertrain, and Chassis Cross-domain integration of ...

China Autonomous Driving Data Closed Loop Research Report, 2025

Data Closed-Loop Research: Synthetic Data Accounts for Over 50%, Full-process Automated Toolchain Gradually Implemented Key Points:From 2023 to 2025, the proportion of synthetic data increased from 2...

Automotive Glass and Smart Glass Research Report, 2025

Automotive Glass Report: Dimmable Glass Offers Active Mode, Penetration Rate Expected to Reach 10% by 2030 ResearchInChina releases the Automotive Glass and Smart Glass Research Report, 2025. This r...

Passenger Car Brake-by-Wire (BBW) Research Report, 2025

Brake-by-Wire: EHB to Be Installed in 12 Million Vehicles in 2025 1. EHB Have Been Installed in over 10 Million Vehicles, A Figure to Hit 12 Million in 2025. In 2024, the brake-by-wire, Electro-Hydr...

Autonomous Driving Domain Controller and Central Computing Unit (CCU) Industry Report, 2025

Research on Autonomous Driving Domain Controllers: Monthly Penetration Rate Exceeded 30% for the First Time, and 700T+ Ultrahigh-compute Domain Controller Products Are Rapidly Installed in Vehicles L...

China Automotive Lighting and Ambient Lighting System Research Report, 2025

Automotive Lighting System Research: In  2025H1, Autonomous Driving System (ADS) Marker Lamps Saw an 11-Fold Year-on-Year Growth and the Installation Rate of Automotive LED Lighting Approached 90...

Ecological Domain and Automotive Hardware Expansion Research Report, 2025

ResearchInChina has released the Ecological Domain and Automotive Hardware Expansion Research Report, 2025, which delves into the application of various automotive extended hardware, supplier ecologic...

Automotive Seating Innovation Technology Trend Research Report, 2025

Automotive Seating Research: With Popularization of Comfort Functions, How to Properly "Stack Functions" for Seating? This report studies the status quo of seating technologies and functions in aspe...

Research Report on Chinese Suppliers’ Overseas Layout of Intelligent Driving, 2025

Research on Overseas Layout of Intelligent Driving: There Are Multiple Challenges in Overseas Layout, and Light-Asset Cooperation with Foreign Suppliers Emerges as the Optimal Solution at Present 20...

High-Voltage Power Supply in New Energy Vehicle (BMS, BDU, Relay, Integrated Battery Box) Research Report, 2025

The high-voltage power supply system is a core component of new energy vehicles. The battery pack serves as the central energy source, with the capacity of power battery affecting the vehicle's range,...

Automotive Radio Frequency System-on-Chip (RF SoC) and Module Research Report, 2025

Automotive RF SoC Research: The Pace of Introducing "Nerve Endings" such as UWB, NTN Satellite Communication, NearLink, and WIFI into Intelligent Vehicles Quickens  RF SoC (Radio Frequency Syst...

Automotive Power Management ICs and Signal Chain Chips Industry Research Report, 2025

Analog chips are used to process continuous analog signals from the natural world, such as light, sound, electricity/magnetism, position/speed/acceleration, and temperature. They are mainly composed o...

Global and China Electronic Rearview Mirror Industry Report, 2025

Based on the installation location, electronic rearview mirrors can be divided into electronic interior rearview mirrors (i.e., streaming media rearview mirrors) and electronic exterior rearview mirro...

Intelligent Cockpit Tier 1 Supplier Research Report, 2025 (Chinese Companies)

Intelligent Cockpit Tier1 Suppliers Research: Emerging AI Cockpit Products Fuel Layout of Full-Scenario Cockpit Ecosystem This report mainly analyzes the current layout, innovative products, and deve...

Next-generation Central and Zonal Communication Network Topology and Chip Industry Research Report, 2025

The automotive E/E architecture is evolving towards a "central computing + zonal control" architecture, where the central computing platform is responsible for high-computing-power tasks, and zonal co...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号