ADAS and Autonomous Driving Industry Chain Report 2018 (VII) - L4 Autonomous Driving Startups
  • Aug.2018
  • Hard Copy
  • USD $3,800
  • Pages:205
  • Single User License
    (PDF Unprintable)       
  • USD $3,600
  • Code: CYH078
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $5,400
  • Hard Copy + Single User License
  • USD $4,000
      

ADAS and Autonomous Driving Industry Chain Report 2018 (VII) - L4 Autonomous Driving Startups at 205 pages in length focuses on researching L4 autonomous driving startups as well as HD map and V2X for L4 autonomous driving.

Of the report series (seven reports), the previous five introduce commercialized ADAS, vision, automotive radar, computing platform, system integration, and low-speed autonomous driving which is to be commercially available soon. The last two reports highlight eventually to-be-commercialized commercial vehicle automated driving and L4 passenger car autonomous driving, respectively.

There have long been two camps in the implementation path of automated driving: Camp A mainly comprised of European and Asian OEMs advocates a progressive path evolving from L2 and L3 to L4 and L5 step by step; Camp B represented by Google stands for a radical path going straight to L4 and above.

In 2018, Camp A believes more firmly that L3 cannot be avoided and L2.5 and L2.75 should be derived from between L2 and L3, and L3.5 from between L3 and L4. To secure the reliability of human and computer driving together, it becomes an important subject to monitor human driver.

Camp B is more confident as well, as WAYMO sees its market capitalization climb to USD175 billion and tests tens of thousands of self-driving cars on roads.

The operational design domain (ODD) of WAYMO self-driving car is confined to just hundreds of square kilometers for the moment; L2-L3 self-driving cars at Camp A can travel on most roads. So the two camps will continue to live in peace with each other in the short run.

In July 2018, John Krafcik, WAYMO’s CEO, admitted that it would take a longer time than expected for the prevalence of autonomous vehicles.

初创1_副本.png

There are at least four technical barriers needing to be surmounted in pushing ahead with L4 from designated scenarios to public roads: first, mass-production of powerful computing platforms; second, stronger sensing capabilities and lower cost of sensors; third, improvement of related technical standards; fourth, inadequate infrastructure. L4 automated driving start-ups will still depend on raised funds to survive in the next two to three years.

We have discussed computing platform and sensor in the previous reports. But L4 development will affect the existing landscape of sensor companies.

Considering too high sensor cost, WAYMO develops by itself all sensor systems it needs, including LiDAR. GM Crusie bought Strobe, a LiDAR company, and Ford Argo acquired Princeton Lightwave, a company engaged in LiDAR. WAYMO can cut 90% cost by developing LiDAR independently; GM Cruise indicates that it can use Strobe’s system to integrate all sensors into one chip, lowering LiDAR cost by 99%.

In addition to sensors, the automated driving leaders also design core computing chips themselves, for example, WAYMO, Tesla and Baidu are all developing their own AI-powered chips.

Singulato, an emerging Chinese automaker indicates that: conventional automotive design is a kind of separate design when it comes to intelligent driving capabilities, that is, separate data cannot be combined for multi-scenario application. In other words, a front ADAS company has a set of sensors of its own and another automated parking company also uses different sensors from others. They cannot share sensor data, which means the waste of resources. Singulato adopts integrated design at the beginning, using same sensors to implement more than a dozen of ADAS functions. And such design also makes subsequent OTA update easier.

Against the backdrop of growing integration, traditional ADAS and sensor companies need to rethink their market orientation in an era of L4.

The number of sensors grows to a dozen and even dozens in the evolution from L2 to L4, generating a data traffic surge. Improvement in supporting facilities, mainly a better perception system, includes introduction of HD map and V2X, which also bring about massive data flow. Data confluence of various perception systems make acquisition, fusion and processing of autonomous driving data flow a focus in industrial competition and cooperation.

Absence of a universally accepted standard for acquisition and transmission of sensor (including HD map) data hinders the development of the industry. Hence, standards organizations like ADASIS, SENORIS, SIP-ADUS, CAICV HD MAP WG and ONEMAP have been initiated.

 初创2_副本.png

The year 2018 sees continued improvement in autonomous driving industry chain and influx of capital. As the market prospects of L4 become more visible, HD map and V2X, the auxiliaries of L4, are chased by enterprises and capital.

ResearchInChina tries to make an overall view of several hundreds of enterprises in autonomous driving industry and present a full picture of the industry via seven industrial-chain reports, 1,400 pages in total, whilst many problems are found, such as irrational layout, unclear orientation, disconnection from industrial chain, and lack of security policy.

As shown in the following diagram, the autonomous driving industry chain is so complicated that it’s a challenge for any enterprise to have a overall grasp of development trends.

 初创3_副本.png

Dozens of times larger than the L2 market, the L4 market will take more than five years to grow mature in China. Tracking autonomous and ICV industry, ResearchInChina will release a weekly report every week and ten monthly reports every month, helping enterprises to see where the industry goes, take in competitive landscape, and seize opportunities in intelligent & connected and autonomous driving markets.

初创4_副本.png

1 Overview of L4 Autonomous Driving

2 L4 Autonomous Driving Startups
2.1 Waymo
2.1.1 Development Course
2.1.2 Investments in Autonomous Driving Field
2.1.3 Large-scale Testing and Verification of Autonomous Driving Safety
2.1.4 Autonomous Driving Simulation System Carcraft 
2.1.5 Autonomous Driving System Composition
2.1.6 Computing Platform
2.1.7 Partners
2.1.8 Operation of Driverless Taxicab
2.2 GM Cruise
2.2.1 Cruise Autonomous Driving System
2.2.2 Basic Modules of Cruise AV
2.2.3 Deployment of Major Sensors on Cruise AV
2.2.4 Testing Projects and Production Bases
2.2.5 Layout in Autonomous Ride-sharing Mobility
2.3 Drive.ai
2.3.1 Configurations of Autonomous Vehicle
2.3.2 Three Stages for the Landing of Autonomous Vehicle
2.4 ZMP
2.4.1 RoboCar MiniVan
2.4.2 RoboCar MV 2
2.4.3 Revenue in 2017-2018
2.4.4 Entry to Chinese Market
2.5 NuTonomy
2.5.1 Testing 
2.5.2 Partners
2.6 Argo.ai
2.6.1 Acquisition of Princeton Lightwave
2.6.2 GeigerCruizer
2.7 Momenta
2.7.1 Key Technologies and Products
2.7.2 Product Strategy for Autonomous Vehicle
2.7.3 HD Map
2.8 Pony.ai
2.8.1 Development History
2.8.2 Key Technologies and Tests
2.8.3 R&D and Operation Layout 
2.9 JingChi
2.9.1 Core Team
2.9.2 Key Technologies
2.9.3 Development Course
2.9.4 Future Planning
2.10 Aurora
2.10.1 Founding Team
2.10.2 Trend of Development
2.11 Zoox
2.11.1 Key Technologies
2.11.2 Major Products
2.11.3 Development Strategy
2.12 AImotive
2.12.1 Global Presence and Partners
2.12.2 Financing and Development History
2.12.3 Products
2.12.4 Technical Features
2.12.5 Timeline for Autonomous Driving Capabilities
2.13 Roadstar.ai
2.13.1 Development Course
2.13.2 System Architecture and Business Model
2.14 AKKA
2.15 HoloMatic

3 HD Map Industry
3.1 Map for Autonomous Driving
3.1.1 ADAS Map
3.1.2 HAD Map
3.1.3 HD Map
3.1.4 Dynamic Map
3.1.5 Diversified Forms of HD Map
3.2 Role of HD Map
3.2.1 HD Map Applied in Vehicle Positioning
3.2.2 HD Map Applied in Path Planning and Perception
3.2.3 Role of Dynamic Map
3.3 Standards about HD Map
3.3.1 Autonomous Driving Data Chain and Ecology
3.3.2 Constitution of Autonomous Driving Data Chain Standards
3.3.3 NDS
3.3.4 ADASIS
3.3.5 ADASIS V3
3.3.6 SENSORIS
3.3.7 CAICV HD MAP WG
3.4 Production of HD Map
3.4.1 Production Flow of HD Map
3.4.2 Data Production of Static Map
3.4.3 Data Updates of Dynamic Map

4 HD Map-related Companies
4.1 Here
4.1.1 Development Course
4.1.2 Layout in Automotive Field
4.1.3 Here HD Live Map
4.1.4 Here OTA Solutions
4.1.5 Self-learning HD map
4.1.6 Here and OneMap
4.1.7 Expansion in HD Map
4.2 TomTom
4.2.1 Global Footprint
4.2.2 Revenue
4.2.3 Revenue Structure
4.2.4 Automotive Business
4.2.5 Telematics Business
4.2.6 Map Development
4.2.7 HD Map
4.2.8 Layout in HD Map and Expansion
4.2.9 To Solve the Problem of Occupant’s Carsickness in Autonomous Vehicle
4.3 AutoNavi (amap.com)
4.3.1 Hierarchical Acquisition System of HD Map
4.3.2 HD Map Data Acquisition Car
4.3.3 HD Map Technology Roadmap
4.4 Baidu Map
4.4.1 HD Map Business
4.4.2 Apollo HD Map File Structure
4.4.3 Apollo Real-time Relative Map
4.5 NavInfo
4.5.1 Development Course
4.5.2 Global Customers
4.5.3 Telematics Business
4.5.4 Development Path of HD Map Business
4.5.5 Status Quo of HD Map
4.5.6 Technical Solutions to HD Map
4.5.7 Data Specifications for HD Map
4.6 KuanDeng Technology
4.6.1 Technical Solutions
4.6.2 HD Map
4.7 Deep Map
4.7.1 Financing and Products
4.7.2 Technical Solutions to 3D Map
4.8 Civil Maps
4.8.1 Technical Solutions to 3D Map
4.8.2 Cooperation with Arm in Autonomous Driving Navigation and Positioning Solutions
4.8.3 Cooperation with Renovo
4.9 lvl 5
4.9.1 HD Map Drawing Scheme
4.9.2 Three Levels of lvl 5 HD Map
4.10 Carmera
4.10.1 Partners and Cooperative Projects
4.10.2 Autonomous Vehicle 3D Map Solutions
4.11 Wayz.ai
4.12 Ushr
4.13 DeepMotion
4.14 Wuhan KOTEI Big Data Corporation
4.15 Qianxun SI
4.16 Dynamic Map Planning

5 V2X Industry
5.1 Fundamentals of V2X
5.1.1 Why to Need V2X
5.1.2 Key Technologies for Vehicle Communications
5.1.3 The Architecture of V2X Communications
5.1.4 V2X Ecosystem and Standards
5.1.5 Countries’ Support for V2X Industry
5.1.6 V2X Use Cases
5.1.7 C-V2X Experiments Worldwide
5.1.8 China’s First V2X Application Layer Group Standard
5.2 Development Stages of V2X
5.2.1 Timeline for V2X Applied in Autonomous Driving
5.2.2 Progress of 3GPP V2X Standards
5.2.3 The First Stage of 3GPP V2X
5.2.4 The Second and Third Stages of 3GPP V2X
5.2.5 Timeline for C-V2X (V2V/V2I) Deployment
5.3 5GAA

6 V2X Companies
6.1 Sierra Wireless
6.2 Telit
6.3 Cohda Wireless
6.4 Savari
6.5 NEBULA Link

 

Auto Shanghai 2025 Summary Report

The post-show summary report of 2025 Shanghai Auto Show,  which mainly includes three parts: the exhibition introduction, OEM, and suppliers. Among them, OEM includes the introduction of models a...

Automotive Operating System and AIOS Integration Research Report, 2025

Research on automotive AI operating system (AIOS): from AI application and AI-driven to AI-native Automotive Operating System and AIOS Integration Research Report, 2025, released by ResearchInChina, ...

Software-Defined Vehicles in 2025: OEM Software Development and Supply Chain Deployment Strategy Research Report

SDV Research: OEM software development and supply chain deployment strategies from 48 dimensions The overall framework of software-defined vehicles: (1) Application software layer: cockpit software, ...

Research Report on Automotive Memory Chip Industry and Its Impact on Foundation Models, 2025

Research on automotive memory chips: driven by foundation models, performance requirements and costs of automotive memory chips are greatly improved. From 2D+CNN small models to BEV+Transformer found...

48V Low-voltage Power Distribution Network (PDN) Architecture and Supply Chain Panorama Research Report, 2025

For a long time, the 48V low-voltage PDN architecture has been dominated by 48V mild hybrids. The electrical topology of 48V mild hybrids is relatively outdated, and Chinese OEMs have not given it suf...

Research Report on Overseas Cockpit Configuration and Supply Chain of Key Models, 2025

Overseas Cockpit Research: Tariffs stir up the global automotive market, and intelligent cockpits promote automobile exports ResearchInChina has released the Research Report on Overseas Cockpit Co...

Automotive Display, Center Console and Cluster Industry Report, 2025

In addition to cockpit interaction, automotive display is another important carrier of the intelligent cockpit. In recent years, the intelligence level of cockpits has continued to improve, and automo...

Vehicle Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2025

Functional safety research: under the "equal rights for intelligent driving", safety of the intended functionality (SOTIF) design is crucial As Chinese new energy vehicle manufacturers propose "Equal...

Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025

AI-Defined Vehicle Report: How AI Reshapes Vehicle Intelligence? Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025, released by ResearchInChina, studies, analyzes, and summarizes the c...

Automotive Digital Key (UWB, NearLink, and BLE 6.0) Industry Trend Report, 2025

Digital key research: which will dominate digital keys, growing UWB, emerging NearLink or promising Bluetooth 6.0?ResearchInChina has analyzed and predicted the digital key market, communication techn...

Integrated Battery (CTP, CTB, CTC, and CTV) and Battery Innovation Technology Report, 2025

Power battery research: 17 vehicle models use integrated batteries, and 34 battery innovation technologies are released ResearchInChina released Integrated Battery (CTP, CTB, CTC, and CTV)and Battery...

AI/AR Glasses Industry Research Report, 2025

ResearchInChina released the " AI/AR Glasses Industry Research Report, 2025", which deeply explores the field of AI smart glasses, sorts out product R&D and ecological layout of leading domestic a...

Global and China Passenger Car T-Box Market Report 2025

T-Box Research: T-Box will achieve functional upgrades given the demand from CVIS and end-to-end autonomous driving ResearchInChina released the "Global and China Passenger Car T-Box Market Report 20...

Automotive Microcontroller Unit (MCU) Industry Report, 2025

Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic produc...

Automotive LiDAR Industry Report, 2024-2025

In early 2025, BYD's "Eye of God" Intelligent Driving and Changan Automobile's Tianshu Intelligent Driving sparked a wave of mass intelligent driving, making the democratization of intelligent driving...

Software-Defined Vehicles in 2025: SOA and Middleware Industry Research Report

Research on automotive SOA and middleware: Development towards global SOA, cross-domain communication middleware, AI middleware, etc. With the implementation of centrally integrated EEAs, OEM softwar...

Global and Chinese OEMs’ Modular and Common Technology Platform Research Report, 2025

Modular platforms and common technology platforms of OEMs are at the core of current technological innovation in automotive industry, aiming to enhance R&D efficiency, reduce costs, and accelerate...

Research Report on the Application of AI in Automotive Cockpits, 2025

Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution" From the early 2000s, when voice recognition and facial monitoring functions were first ...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号