Global and China Intelligent Cockpit Platform for Automobiles Industry Report, 2020
  • Feb.2020
  • Hard Copy
  • USD $3,800
  • Pages:180
  • Single User License
    (PDF Unprintable)       
  • USD $3,600
  • Code: CYH091
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $5,400
  • Hard Copy + Single User License
  • USD $4,000
      

Cockpit electronic system refers to a complete set of system composed of center console, full LCD dashboard, HUD, rear seat entertainment system, smart audio, telematics module, streaming media rearview mirror and telematics system.

Based on cockpit domain controller, intelligent cockpit system as a foundation of human-car interaction and V2X, provides intelligent interaction, intelligent scenarios and personalized services beyond capabilities of a cockpit electronic system, through a unified software and hardware platform.

Intelligent cockpit platform is a software and hardware architecture enabling sub-systems and features of a smart cockpit. It consists of hardware and software parts: hardware part is a hardware platform comprised of domain controllers and chips; software part refers to a software platform built by operating system, Hypervisor, middleware and support tools.

With advances in technologies about chip, software, among others, one-core multi-screen multi-system integrated cockpit platform as a way to integrate systems, cut costs and meet needs for multi-screen interconnection, intelligent interaction and intelligent driving capabilities that an usual cockpit cannot provide, becomes a mainstay in next-generation cockpit.

Quite a few automakers have set about deploying smart cockpit system. Some already equip the system on their production vehicles. Examples include MBUX system mounted on 2018 Mercedes-Benz A Class, and C4-Alfus 2.0 and C4-Pro, two domain controller-based cockpit platforms co-developed by Neusoft and Intel and installed in 2019 models like Hongqi HS7 and EXCEED LX. 

cockpit 1_副本.png

At CES 2020, Land Rover unveiled New Defender 90 and 110, the first ever vehicles to feature dual-modem, dual eSIM design for enhanced connectivity and functionality. Powered by the Qualcomm Snapdragon S820Am Automotive Platform with the integrated Snapdragon X12 LTE Modem, the New Defender can download Software-Over-The-Air (SOTA) updates without interruption and while streaming music and apps through the vehicle’s new Pivi Pro infotainment system. The New Defender is also the first Land Rover vehicle to include a domain controller that consolidates a number of Advanced Driver Assistance Systems (ADAS) and driver convenience functions built on top of the QNX Hypervisor.

cockpit 2.png

Intelligent cockpit hardware platform tends to be a fusion of more and more sub-systems and capabilities. How to well manage these sub-systems and functions rests with the upgrading of cockpit processor and smart cockpit software platform. 

Smart cockpit hardware platform becomes ever more powerful in the process of integration
As the base of an intelligent cockpit hardware platform, cockpit domain controller integrated with multiple electronic control units (ECU) outperforms others in safety, size, power consumption, weight and cost, enabling seamless human-machine interaction in combination with interaction ecosystem.

All automotive system integrators are stepping up their efforts to deploy smart cockpit platform. Among them, Tier1 suppliers like Visteon, Aptiv, Neusoft and Desay SV have spawned intelligent cockpit platforms; Continental, Panasonic, Bosch, Samsung, Huawei and so forth have also rolled out their new-generation intelligent cockpit platforms. In the forthcoming years, competition in cockpit platform field will prick up.

Visteon currently leads the intelligent cockpit domain controller industry. Visteon SmartCore has found massive application in Mercedes-Benz MBUX system early in 2018. At CES 2020, Visteon showcased its newest SmartCore?, an intelligent cockpit platform which is integrated with the Tencent Auto Intelligence (TAI) system and first available to GAC Aion LX, a new BEV model to be launched in 2020. Moreover, Dongfeng and Geely are also partners of Visteon.

cockpit 3.png

At the IAA 2019 in Frankfurt, Continental showcased the latest version of its Integrated Interior Platform (IIP), a new scalable cockpit platform favoring operating systems like QNX, Integrity, and Android. Continental plans to mass-produce the solution in 2021.

cockpit 4.png

 At CES 2020, Samsung Electronics unveiled Digital Cockpit 2020, which utilizes 5G to link features inside and outside the vehicle and provide connected experiences for drivers and passengers alike. Digital Cockpit 2020 is the third co-development between Samsung Electronics and Harman International, and combines Samsung’s telecommunications technologies, semiconductors and displays with HARMAN’s automotive expertise. Digital Cockpit 2020 incorporates eight displays inside the vehicle, as well as eight cameras. The solution utilizes Samsung Exynos Auto V9 SoC (System on Chip), a semiconductor for vehicle electronics, and Android 10, which allow for several features to be run at the same time. Besides, Samsung’s integrated IoT platform SmartThings can work in tandem with the revamped “Bixby in the car” to enhance connectivity by allowing the vehicle to actively communicate with the driver. Once the driver logs in using either facial recognition or a smartphone fingerprint reader, the Center Information Display can be used to show the driver’s schedule and a range of other information. Unlike the 2019 Digital Cockpit, the 2020 solution allows for connections to be made wirelessly.

cockpit 5-1.png

Panasonic Automotive revealed its latest fully connected eCockpit concept at CES 2020. The technology platform integrates Panasonic’s proprietary SkipGen 3.0 in-vehicle infotainment (IVI) system with Google’s Android Automotive OS running on Android 10.  In the concept vehicle, SkipGen 3.0 is paired with the next generation cockpit domain controller, SPYDR 3.0.  At the core, the single brain SPYDR 3.0 acts as a hypervisor and is capable of driving up to eleven displays. 

As the kernel of cockpit domain controllers, cockpit processors are mainly supplied by Qualcomm, NXP, Intel, Renesas, Texas Instruments, NVIDIA, Allwinner, Samsung, MediaTek, Horizon Robotics, etc. Among them, Qualcomm, Intel and Renesas are the most competitive market players by virtue of their bombshells -- Qualcomm 820a / 835A, Intel A3900 and Renesas R-Car H3 / M3. The major processor chips differ in fabrication processes, cores, and especially GPU computing power which determines the infrastructure level of the cockpit hardware platform.

Software platform becomes the focus of differentiation; Cockpit will be defined by software in future

In intelligent cockpit software platform, hypervisor and vehicle operating system are the most important components. Hypervisor allows multiple operating systems and applications to share hardware as a middle software layer that runs between the underlying physical server and the operating system.

cockpit 5.png

The prevailing automotive operating systems embrace QNX, Linux, Android, AliOS, etc., each of which has merits and demerits. Among them, QNX dominates the automotive cluster system market with high security; the open-source Linux has become the underlying system of custom-made operating systems; Android and AliOS are increasingly used by IVI systems due to rich application ecosystem.

Under the software-defined car trend, operating system is crucial to the intelligent connectivity layout of automakers, and the focus of the emerging system integrators’ deployments. Tesla's self-developed operating system made a success. In 2019, Volkswagen announced to lavish huge on R&D of VW.OS. Several Chinese emerging automakers follow Tesla to develop operating systems by themselves. Yet, all Japanese automakers support AGL in which China-based SITECH also joined.

cockpit 6.png

Also, the new suppliers such as Huawei, ZTE, Alibaba and Baidu have rolled out self-developed operating systems successively. In the future, there will be cut-throat competition in the automotive operating system market. At length, only two or three mainstream operating systems may survive. In fact, there are three mainstream cockpit operating systems for automakers: QNX, Android, and Linux (AGL).

Due to high requirements on safety, most clusters apply QNX. IVI, co-pilot entertainment and rear seat entertainment systems mostly make use of Android. Chinese brands like Geely, Changan, BYD, Dongfeng, Great Wall Motor and GAC are all based on Android, while SAIC prefers AliOS. Audi launched Android-based MIB3 system in 2019. BMW is extending the reach of seamless connectivity in its vehicles with the introduction of Android Auto? starting in mid-2020.

Because intelligent cockpit supports multiple operating systems such as QNX, Android and Linux simultaneously, hypervisors running directly on physical hardware have been widely used. As an intermediate software layer, hypervisors allow operating systems and applications to share hardware. Hypervisors not only coordinate access to hardware, but also impose protection between virtual machines. Common hypervisors include QNX Hypervisor, ACRN, COQOS Hypervisor, PikeOS, and Harman Device Virtualization.

QNX Hypervisor 2.0 uses BlackBerry’s 64-bit embedded operating system QNX SDP 7.0, allowing developers to unify multiple operating systems to a single computing platform or SoC chip. Operating systems such as QNX Neutrino, Linux, and Android are supported on BlackBerry QNX Hypervisor 2.0. The cockpit platforms of Visteon, Denso, Marelli, WM Motor, etc., unexceptionally render QNX Hypervisor.

cockpit 7.png
 

Global and China Intelligent Cockpit Platform for Automobile Industry Report, 2020 highlights the followings:
20120114.gifDefinition, status quo, industry chain and trends of automotive intelligent cockpit platforms;
20120114.gifComparison between automotive intelligent cockpit platform solutions, OEM cockpit platform solution layout;
20120114.gifStatus quo and trends of intelligent cockpit platforms, domain controller market size forecast, typical cockpit hardware platform domain controller solutions and their customers;
20120114.gifMajor intelligent cockpit hardware platform vendors (Visteon, Panasonic, Continental, Aptiv, etc.) and product layout;
20120114.gifApplied cases of intelligent cockpit hardware platform (Tesla, Mercedes-Benz, Land Rover, etc.);
20120114.gifComparison between intelligent cockpit processors. Major cockpit processor vendors (Qualcomm, Intel, NXP, Samsung, Allwinner, Horizon Robotics) and product development;
20120114.gifComposition and trends of major intelligent cockpit software platforms;
20120114.gifStatus quo of automotive operating systems, underlying OS market share, major automotive operating system vendors and product development;
20120114.gifIntelligent cockpit software platform virtualization technology (Hypervisor) layout;
20120114.gif18 global and Chinese automotive intelligent cockpit platform solution integrators (cockpit platform solutions and planning).
 

1 Overview of Intelligent Cockpit Platform
1.1 Definition of Intelligent Cockpit Platform
1.2 New Features like Multi-screen Linkage Facilitate the Evolution of Intelligent Cockpit Platform
1.3 Volkswagen’s Unified Automotive Electrical Architecture
1.4 SVA Intelligent Vehicle New Architecture
1.5 Development Tendency of Automotive Cockpit
1.6 SOC Trend
1.7 Software and Hardware System Architecture of Intelligent Cockpit Platform
1.8 Increasing Separation of Cockpit Software from Hardware 
1.9 Industrial Chain Fusion and Cross-industry Tendencies
1.10 Comparison between Main Overseas Cockpit Platform Solutions
1.11 Comparison between Main Chinese Cockpit Platform Solutions
1.12 Overview of World’s Major Automakers’ Intelligent Cockpit Platforms
1.13 Composition of Major Automakers’ Cockpits

2 Intelligent Cockpit Hardware Platform
2.1 Status Quo and Trends of Intelligent Cockpit Hardware Platform
2.1.1 Integration of Traditional Cockpit’s Multiple ECUs
2.1.2 Design (Sample) of Cockpit Domain Controller
2.1.3 Cockpit Processor Market Pattern
2.2 Intelligent Cockpit Processor
2.2.1 Typical Cockpit Processors
2.2.2 Comparison between Main Cockpit Processors
2.3 Cockpit Processor Suppliers and Products
2.3.1 Renesas R-CAR Series for Cockpit Processor
2.3.2 Intel A3900 Processor
2.3.3 Qualcomm Cockpit Processor: 820A
2.3.3 Qualcomm Snapdragon Cockpit Processor: 3rd-Gen Cockpit SoC
2.3.4 NVIDIA Parker Deep Learning Cockpit Processor
2.3.5 NXP Cockpit Processor
2.3.6 TI Cockpit Chip
2.3.7 Samsung Cockpit Processor
2.3.8 Allwinner Technology Cockpit Processor
2.3.9 MediaTek Cockpit Chip
2.3.10 Horizon Robotics Automotive-grade Cockpit Chip
2.4 Intelligent Cockpit Hardware Platform
2.4.1 Cockpit Hardware Platform
2.4.2 Development Trends of Cockpit Domain Controller and Its Influence on the Industry
2.4.3 Solutions and Clients of Typical Cockpit Domain Controller Manufacturers
2.4.4 Estimated Size of Global Intelligent Vehicle Cockpit Domain Controller Market
2.5 Key Suppliers of Intelligent Cockpit Hardware Platform
2.5.1 Visteon Cockpit Domain Controller
2.5.2 Continental Integration of Body Electronics Platform
2.5.3 Denso Harmony Core
2.5.4 Panasonic SPYDR
2.5.5 Intel Cockpit Platform
2.5.6 Aptiv Integrated Cockpit Controller
2.5.7 Samsung Cockpit Hardware Platform
2.5.8 Huawei Intelligent Cockpit
2.6 Application Cases of Intelligent Cockpit Hardware Platform
2.6.1 Benz A-Class
2.6.2 HOZON Auto
2.6.3 Tesla
2.6.4 Land Rover Defender
2.6.5 Volkswagen

3 Intelligent Cockpit Software Platform
3.1 Composition and Trends of Intelligent Cockpit Software Platform
3.1.1 What Is Intelligent Cockpit Software Platform?
3.1.2 Status Quo of Automotive OS
3.1.3 Android Leads the IVI OS Market
3.1.4 Vehicle Underlying OS Market Share
3.1.5 Second Development on the Underlying OS
3.1.6 Under Multiple Operating Systems, Virtual Machine Is an Inevitable Choice
3.2 Main Automotive Operating Systems and Vendors
3.2.1 BlackBerry QNX
3.2.1.1 Profile
3.2.1.2 QNX Cockpit Software Platform Solutions
3.2.1.3 Recent Collaborations in Automotive Sector
3.2.2 Linux&AGL
3.2.3 Android & Andriod Auto
3.2.4 AliOS
3.2.5 VW.OS
3.2.6 Huawei Harmony OS
3.3 Hypervisor
3.3.1 QNX Hypervisor 
3.3.2 ACRN
3.3.3 COQOS Hypervisor 
3.3.4 PikeOS
3.3.5 EB Corbos Hypervisor 
3.3.6 Harman Device Virtualization

4 Global Intelligent Cockpit System Integrators
4.1 Harman
4.1.1 Profile
4.1.2 Harman Intelligent Cockpit Solutions
4.1.3 Harman ExP Solutions
4.1.4 5G-favored “2020 Digital Cockpit”
4.1.5 Recent Collaborations
4.2 Visteon
4.2.1 Profile
4.2.2 Product Matrix
4.2.3 Visteon Future Cockpit
4.2.4 Visteon SmartCore
4.2.5 Visteon and Tencent Collaborate on Cockpit Domain Controller
4.2.6 Visteon Cockpit Display Trends
4.3 Faurecia
4.3.1 Profile
4.3.2 Portfolios of Automotive Electronics
4.3.3 Faurecia CIP
4.3.4 Faurecia Intelligent Cockpit Layout and Collaborations
4.4 Aptiv
4.4.1 AptivProfile
4.4.2 New-generation Intelligent Vehicle Architecture SVA
4.4.3 Aptiv Infotainment System
4.5 Bosch
4.5.1 Profile
4.5.2 Bosch Car Multimedia
4.5.3 Bosch Convergence Product in Market
4.5.4 Bosch Multimedia Cockpit OSS Software Architecture
4.5.5 Bosch Multimedia Domain Architecture
4.5.6 Graphic Processing Architecture of ADIT Cockpit
4.5.7 Bosch Digital Cabin (Shanghai) R&D Center
4.6 Continental AG
4.6.1 Profile
4.6.2 Continental Automotive Group
4.6.3 Continental IIP
4.7 Denso
4.7.1 Profile
4.7.2 Harmony Core
4.7.3 Denso Driver Status Monitoring
4.7.4 Recent Developments
4.8 Panasonic
4.8.1 Automotive Business
4.8.2 Deployment in Cockpit Electronics
4.8.3 New-generation Connected Electronic Cockpit Solutions
4.8.4 Computing Architecture of Cockpit Electronics
4.8.5 Physical Architecture of Cockpit Electronics 
4.8.6 Panasonic Integrated Center Console

5 Chinese Intelligent Cockpit System Integrators
5.1 Desay SV
5.1.1 Profile
5.1.2 Revenue
5.1.3 New Products
5.1.4 Intelligent Cockpit
5.1.5 Partnership with Synopsys in Virtual Cockpit
5.1.6 Leading Ideal ONE Intelligent Cockpit Orders
5.1.7 Dearcc Enovate ME7 Realizes 5-Screen Interaction
5.2 Neusoft
5.2.1 Profile
5.2.2 Operations and Global Footprint
5.2.3 Deployment in Automotive Electronics
5.2.4 Neusoft Reach
5.2.5 Neusoft Intelligent Cockpit System
5.2.6 C4-Alfus
5.2.7 C4-Alfus 2.0
5.2.8 4-Screen Intelligent Cockpit
5.2.9 C4 Pro Intelligent Cockpit System
5.2.10 Partners
5.3 HASE
5.3.1 Profile
5.3.2 Layout in Intelligent Cockpit
5.4 COOKOO
5.4.1 Automotive Cockpit and Driving Computing Platform Architecture
5.4.2 Intelligent Cockpit Product Roadmap
5.5 Huawei
5.5.1 Introduction to Huawei Intelligent Connected Vehicle (ICV) Solutions
5.5.2 Huawei Automotive CC Architecture
5.5.3 Huawei CDC Intelligent Cockpit Platform
5.5.4 Huawei 5G Intelligent Cockpit
5.6 Thundersoft
5.6.1 Profile
5.6.2 Revenue
5.6.3 Thundersoft Deployment in Intelligent Connected Vehicle
5.6.4 Thundersoft Intelligent Cockpit Solutions
5.6.5 TurboX Auto Platform 4.0
5.7 Auto AI
5.7.1 Profile
5.7.2 Intelligent Cockpit Solutions Based on Virtualization
5.7.3 Non-virtualization Intelligent Cockpit Solutions
5.7.4 Athena OS
5.8 ArcherMind Technology
5.8.1 Profile
5.8.2 Revenue
5.8.3 ArcherMind EX4.0
5.9 China TSP
5.9.1 Profile
5.9.2 Intelligent Cockpit Platform
5.10 Other Suppliers of Intelligent Cockpit Solutions
5.10.1 KOTEI
5.10.2 E-planet Technology
 

Analysis on Xpeng’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2023

Research on Xpeng’s layout in electrification, connectivity, intelligence and sharing: in the innovation-driven rapid development, secured orders for 100 flying cars.     NIO, Xp...

Automotive Cockpit SoC Research Report, 2024

Automotive Cockpit SoC Research: Automakers quicken their pace of buying SoCs, and the penetration of domestic cockpit SoCs will soar Mass production of local cockpit SoCs is accelerating, and the l...

Automotive Integrated Die Casting Industry Report, 2024

Integrated Die Casting Research: adopted by nearly 20 OEMs, integrated die casting gains popularity.  Automotive Integrated Die Casting Industry Report, 2024 released by ResearchInChina summari...

China Passenger Car Cockpit Multi/Dual Display Research Report, 2023-2024

In intelligent cockpit era, cockpit displays head in the direction of more screens, larger size, better looking, more convenient interaction and better experience. Simultaneously, the conventional “on...

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla’s big pr...

Qualcomm 8295 Based Cockpit Domain Controller Dismantling Analysis Report

ResearchInChina dismantled 8295-based cockpit domain controller of an electric sedan launched in December 2023, and produced the report SA8295P Series Based Cockpit Domain Controller Analysis and Dism...

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号