Automated/Autonomous Parking Industry Report, 2019-2020
  • Apr.2020
  • Hard Copy
  • USD $3,400
  • Pages:160
  • Single User License
    (PDF Unprintable)       
  • USD $3,200
  • Code: THC002
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,800
  • Hard Copy + Single User License
  • USD $3,600
      

Why is the installation rate of automated parking not high?

Automated parking was found in 7.7 percent of passenger cars in China in 2019, according to the data from ResearchInChina.

parking_副本.png

As shown in the table above, most Chinese new passenger cars were pre-installed with ultrasonic solutions for automated parking in 2019; while ultrasonic + vision fusion solution only held tiny shares but saw an uptrend from the fourth quarter.

The moderate assembly rate of automated parking results from the limited scenarios of traditional ultrasonic parking solutions where the driver has to stay in the car. To tackle this problem, there are two ways: better performance of ultrasonic radars and more sensors (such as cameras and millimeter-wave radars).

For instance, the AionS Automated Parking System, which was launched by GAC in the first half of 2019, uses 12 Bosch sixth-generation ultrasonic radars to detect a longer range than the previous generation and probe objects as close as 3cm instead of the original 6cm with faster refresh and agility.

parking-bosch.png

More emerging models such as Changan CS75 PLUS, Geely Xingyue, SAIC Roewe MARVEL X, Chery EXEED, etc. have embarked on ultrasonic + vision fusion parking solutions.

Rare application of ultrasonic + visual fusion solution in the past lies in lack of algorithms and powerful compute. Tesla, the pioneer going intelligent, has long resorted to ultrasonic solutions, and its automated parking capability has not performed well. Even Smart Summon launched in the second half of 2019 is not so successful, either.

Tesla’s all models equipped with Autopilot 2.0 carry NVIDIA’s Drive PX2 chip which supports the access to up to 6 cameras. Autopilot 2.0 cannot bolster full work of 8 cameras in the car whatever the compute or video ports. Thus, Autopilot 2.0 does not attend to the fusion of ultrasonic + vision automated parking assistant sufficiently.

According to the study by Chris Zheng, Tesla annotates the mid-range camera in the front trifocal camera at 36 frames per second, records the front fisheye camera and four side-view cameras at 9 frames per second, while it temporarily abandons the remaining front long-range camera and rear-view camera. That is to say, when Autopilot is enabled, only 6 cameras in the car are involved in labeling and perception, of which only the front mid-range camera keeps a high perception frequency while the remaining 5 cameras run strenuously with the limited computing power.

Tesla began to develop chips for strong compute. In 2019, Elon Musk unveiled the Autopilot HW 3.0 hardware upgrade powered by Tesla’s self-developed FSD chip. The previous version HW2.5 uses Nvidia’s Drive PX2 chip. In terms of computing power, the new chip can process about 21 times more images per second than the old one (110 frames per second), at 2,300 frames per second. If all 8 cameras are running at 36 frames per second, the whole vehicle output will be 288 frames per second, which is equivalent to 12.5% of the processing capacity of the FSD chip and is quite sufficient for automated parking.

After solving the computing power, Tesla launched "Smart Summon" at the end of 2019, which is designed to allow the car to drive to the user or an appointed place by the user, maneuvering around objects and parking as necessary. The actual tests prove that Smart Summon still does not work in many cases, indicating that the algorithm needs improvement.

In March 2020, Musk said Tesla would finish work on Autopilot core foundation codes and 3D labelling to provide better algorithms and features for its cars, and then it would unveil "Reverse Summon" soon. Reverse Summon will likely be a mirror feature to Tesla’s existing “Smart Summon”. Whereas Smart Summon allows the user’s car to navigate from its parking space to the user, Reverse Summon likely reverses this. As such, it would conceivably entail that the user’s car can drop the user off, and then navigate to a parking space on its own. To ensure safety, Smart Summon works with the Tesla mobile app when the user’s phone is located within approximately 65 meters of the car with a projected top speed of 8 km/h.

Taking Tesla as a reference, OEMs and Tier1 suppliers are upgrading automated parking systems.

Desay SV told investors that its automated parking system using the vision + ultrasonic fusion solution (algorithms backed by MOMENTA) has been spawned for Chery EXEED, Geely Xing Yue and other models.

Tesla's new deep neural network will integrate all sub-neural networks including perception, path planning, and target recognition. The cooperation between Desay SV, which is adept at hardware, and MOMENTA, a veteran offer of neural network algorithms, inspires traditional Tier1 suppliers.

Valeo has long led the pack in the APA field, and its vision + ultrasonic fusion solution -- Park4U Remote has been applied to Mercedes-Benz's new S-Class sedans and Changan's new CS75 PLUS. With the powerful remote parking, Changan CS75 PLUS has been a best-seller nowadays.

To cater to the complicated parking scenarios in China, Valeo has prepared different sensor combinations for automated parking: Vision + Ultrasonic Radar Fusion Solution, and Millimeter Wave Radar + Ultrasonic Radar Fusion Solution. In 2020, a number of models using Valeo's automated parking solutions will be launched.

By launching Valeo.ai based in Paris, Valeo aims to host an open community network dedicated to the development of automotive applications in artificial intelligence and deep learning.

Souped-up compute and algorithms are not only necessary for automated parking and AVP systems, but also crucial to cockpit system, connected system, ADAS, etc. This involves changes in the vehicle's E/E architecture, super processors, domain controllers, vehicle OTA, information security, to name a few.

In the next few years, decentralized ECUs will be replaced by domain controllers whose development is often dominated by OEMs and Tier1 suppliers. The space for independent parking controllers is narrowing. For APA / AVP startups, it is of vital importance to improve algorithmic competences and have closer collaborations with Tier1 suppliers.

1 Automated Parking Concepts and Technologies
1.1 Concepts and Definition
1.1.1 Concepts of Automated Parking and Autonomous Valet Parking
1.1.2 Typical Architecture and Classification of AVP System
1.1.3 Rating and Evolution of Automated Parking
1.2 Composition and Technologies of Automatic Parking System
1.2.1 Composition
1.2.2 Fundamental Principles
1.2.3 Automated Parking System Configuration of Typical Foreign Vehicle Models
1.3 Development Trends of Automated Parking Industry

2 Automated Parking Market
2.1 Proportion and Quarterly Sales Share of New APA-enabled Vehicle Models, 2017Q1-2019Q4
2.2 Classification and Quarterly Sales Volume of New APA-enabled Vehicle Models (by Ultrasonic and Ultrasonic + Camera)
2.3 Ranking of APA-enabled Vehicle Models in 2019 by Sales Volume (by Car Brand and Vehicle Model)
2.4 APA Solutions and Representative Vehicle Models of Major Car Brands
2.5 Installation Rate of APA by Price, 2017Q1-2019Q4
2.6 Top 30 APA Ranking by Installation Rate in 2019 (by Car Brand)
2.7 Quarterly Installation Rate of Ultrasonic APA by Price, 2017Q1-2019Q4
2.8 Quarterly Installation Rate of (Camera + Ultrasonic) APA by Price, 2017Q1-2019Q4
2.9 Quarterly Ultrasonic Radar Number of Ultrasonic APA, 2017Q1-2019Q4
2.10 APA Solution Ranking by Installation Rate in 2019 (by Car Brand)
2.11 Installation Rate of Automated Parking in Chinese Passenger Car Market, 2014-2023E

3 APA/AVP Scenarios
3.1 Parking Scenarios
3.2 Search for Parking Spaces
3.2.1 Introduction
3.2.2 Related Technology
3.2.3 Requirements for Search and Identification
3.3 Obstacle Detection
3.4 Obstacle Avoidance
3.4.1 Static Obstacle Avoidance
3.4.2 Dynamic Obstacle Avoidance
3.4.3 Dynamic Obstacle Avoidance Tests
3.5 Parking into Parking Spaces
3.5.1 Parallel Parking
3.5.2 Vertical Parking
3.6 One-key Car Calling
3.7 One-key Parking

4 APS / APA / AVP Technology Providers
4.1 Valeo
4.1.1 Parking Business
4.1.2 Parking Product Line
4.1.3 Automated Parking Technology Roadmap
4.1.4 Park4U and Cyber Valet Services
4.1.5 Next-generation Park4U Automated Parking System
4.2 Bosch
4.2.1 ADAS/Parking Product Layout
4.2.2 L2 Automated Parking Technology and Implementation
4.2.3 L3-L5 Automated Parking Planning
4.2.4 AVP Projects
4.2.5 AVP Partners
4.2.6 AVP Clients
4.3 Hyundai Mobis
4.3.1 AVPS
4.3.2 AVP and Wireless Charging
4.4 ZongmuTech
4.4.1 Profile
4.4.2 Integrated Solution of Shared Mobility and Autonomous Parking
4.4.3 Product Technology
4.4.4 Partners
4.4.5 Customers
4.5 UISEE
4.5.1 Profile
4.5.2 Autonomous Parking Technolgy Solution and Progress
4.5.3 Implementation of Automated Valet Parking Technology
4.5.4 Partners
4.6 Baidu AVP
4.6.1 Introduction to Baidu AVP
4.6.2 Features of AVP Technology
4.6.3 Car-Cloud-Map-Field Fusion Solution
4.6.4 AVP Security Framework
4.7 HoloMatic
4.7.1 Profile
4.7.2 New Parking Products
4.7.3 Latest Dynamics
4.8 Intesight
4.8.1 Profile
4.8.2 Parking System Development Plan
4.8.3 Product Technology
4.8.4 Deep Learning Framework and Parking Space Data Collection
4.9 Momenta
4.9.1 Profile
4.9.2 Priority Scenarios of Autonomous Driving
4.9.3 Autonomous Parking Solution
4.9.4 Intelligent Parking Roadmap
4.10 Kunchen
4.10.1 Profile
4.10.2 Autonomous Driving Positioning Solution
4.10.3 AVP Application Solution Based on UWB Technology
4.10.4 Autonomous Driving Application Cases
4.10.5 Roadmap of Location Products for Autonomous Driving
4.11 ForViSiON
4.12 Motovis
4.12.1 Profile
4.12.2 VSLAM Technology
4.12.3 APA and AVP Technical Solutions
4.12.4 Latest Dynamics of Automated Parking
4.13 Nullmax
4.13.1 Profile
4.13.2 Focus on Application Software Layer
4.13.3 Product Plan
4.14 Space Tech
4.14.1 Profile
4.14.2 Automated Parking Technology Solutions
4.14.3 Cross-border Strategic Cooperation
4.15 TJD Parking

5 OEM APA/AVP Application and Trends

5.1 Volkswagen
5.1.1 Introduction to Automated Parking System
5.1.2 Automated Parking Testing and Parking Services
5.2 Tesla
5.2.1 Features of MODEL 3 Automated Parking
5.2.2 Features of MODEL S Automated Parking
5.2.3 Features of Smart Summon
5.2.4 Detailed Functionality of Smart Summon
5.3 Changan Automobile
5.3.1 Automated Parking Layout
5.3.2 Features of APA5.0
5.3.3 Precautions of APA5.0
5.3.4 Features of Remote Parking via Mobile Phone
5.4 Geely
5.4.1 Automated Parking Development Plan
5.4.2 "Crawler" Intelligent Parking System
5.4.3 Features of Xing Yue Automated Parking
5.4.4 Precautions of Xing Yue Automated Parking
5.5 XPENG Motors
5.5.1 Introduction to Automated Parking System
5.5.2 Automated Parking Technology
5.5.3 Parking Space Recognition and Memory
5.5.4 Limitations of G3 Automated Parking
5.6 SAIC
5.6.1 Roewe's APA and AVP
5.6.2 Self-learning Parking Assistant System
5.6.3 Remote Parking
5.6.4 Last-mile Autonomous Parking System
5.7 Chery
5.7.1 Progress of Chery APA/AVP
5.7.2 Introduction to EXEED Automated Parking
5.7.3 Features of EXEED Automated Parking
5.7.4 Precautions of EXEED Automated Parking
5.8 GAC
5.8.1 APA and AVP
5.8.2 Features of AION Automated Parking System
 

Two-wheeler Intelligence and Industry Chain Research Report, 2024-2025

Research on the two-wheeler intelligence: OEMs flock to enter the market, and the two-wheeler intelligence continues to improve This report focuses on the upgrade of two-wheeler intelligence, analyz...

Automotive MEMS (Micro Electromechanical System) Sensor Research Report, 2025

Automotive MEMS Research: A single vehicle packs 100+ MEMS sensors, and the pace of product innovation and localization are becoming much faster. MEMS (Micro Electromechanical System) is a micro devi...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2024-2025

Cockpit-driving integration is gaining momentum, and single-chip solutions are on the horizon   The Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Repor...

Automotive TSP and Application Service Research Report, 2024-2025

TSP Research: In-vehicle connectivity services expand in the direction of cross-domain integration, all-scenario integration and cockpit-driving integration TSP (Telematics Service Provider) is mainl...

Autonomous Driving Domain Controller and Central Control Unit (CCU) Industry Report, 2024-2025

Autonomous Driving Domain Controller Research: One Board/One Chip Solution Will Have Profound Impacts on the Automotive Supply Chain Three development stages of autonomous driving domain controller:...

Global and China Range Extended Electric Vehicle (REEV) and Plug-in Hybrid Electric Vehicle (PHEV) Research Report, 2024-2025

Research on REEV and PHEV: Head in the direction of high thermal efficiency and large batteries, and there is huge potential for REEVs to go overseas In 2024, hybrid vehicles grew faster than batter...

Automotive AI Agent Product Development and Commercialization Research Report, 2024

Automotive AI Agent product development: How to enable “cockpit endorser” via foundation models? According to OPEN AI’s taxonomy of AI (a total of 5 levels), AI Agent is at L3 in the AI development ...

China ADAS Redundant System Strategy Research Report, 2024

Redundant system strategy research: develop towards integrated redundant designADAS redundant system definition framework For autonomous vehicles, safety is the primary premise. Only when ADAS is ful...

Smart Car OTA Industry Report, 2024-2025

Automotive OTA research: With the arrival of the national mandatory OTA standards, OEMs are accelerating their pace in compliance and full life cycle operations The rising OTA installations facilitat...

End-to-end Autonomous Driving Industry Report, 2024-2025

End-to-end intelligent driving research: How Li Auto becomes a leader from an intelligent driving follower There are two types of end-to-end autonomous driving: global (one-stage) and segmented (two-...

China Smart Door and Electric Tailgate Market Research Report, 2024

Smart door research: The market is worth nearly RMB50 billion in 2024, with diverse door opening technologies  This report analyzes and studies the installation, market size, competitive landsc...

Commercial Vehicle Intelligent Chassis Industry Report, 2024

Commercial vehicle intelligent chassis research: 20+ OEMs deploy chassis-by-wire, and electromechanical brake (EMB) policies are expected to be implemented in 2025-2026 The Commercial Vehicle Intell...

Automotive Smart Surface Industry Report, 2024

Research on automotive smart surface: "Plastic material + touch solution" has become mainstream, and sales of smart surface models soared by 105.1% year on year In this report, smart surface refers t...

China Automotive Multimodal Interaction Development Research Report, 2024

Multimodal interaction research: AI foundation models deeply integrate into the cockpit, helping perceptual intelligence evolve into cognitive intelligence China Automotive Multimodal Interaction Dev...

Automotive Vision Industry Report, 2024

Automotive Vision Research: 90 million cameras are installed annually, and vision-only solutions lower the threshold for intelligent driving. The cameras installed in new vehicles in China will hit 90...

Automotive Millimeter-wave (MMW) Radar Industry Report, 2024

Radar research: the pace of mass-producing 4D imaging radars quickens, and the rise of domestic suppliers speeds up. At present, high-level intelligent driving systems represented by urban NOA are fa...

Chinese Independent OEMs’ ADAS and Autonomous Driving Report, 2024

OEM ADAS research: adjust structure, integrate teams, and compete in D2D, all for a leadership in intelligent driving  In recent years, China's intelligent driving market has experienced escala...

Research Report on Overseas Layout of Chinese Passenger Car OEMs and Supply Chain Companies, 2024

Research on overseas layout of OEMs: There are sharp differences among regions. The average unit price of exports to Europe is 3.7 times that to Southeast Asia. The Research Report on Overseas Layou...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号