Denso CASE (Connectivity, Automation, Sharing and Electrification) Research Report, 2020
  • Jul.2020
  • Hard Copy
  • USD $3,400
  • Pages:105
  • Single User License
    (PDF Unprintable)       
  • USD $3,200
  • Code: DYN03
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,800
  • Hard Copy + Single User License
  • USD $3,600
      

As one of the top three Tier1 suppliers in the world, Denso makes adjustments and deployments during the automotive industry disruption.

Sorting out Denso’s existing product lines, up to 200-plus varieties are found, including virtually 70 for CASE (connectivity, automation, sharing and electrification). 

Denso’s CASE Products (Part)

Denso 1_副本.png 
Source: Marklines; ResearchInChina

The number of auto parts will decrease in the trend towards CASE. In a recent opinion, automotive hardware will be standardized and contribute declining revenue and profits, and future competition lies in the ability to develop software-defined vehicles. Emerging carmakers have late-mover advantages with more software talents.

Another view is that Tier1 suppliers will be marginalized by OEMs (e.g., Tesla and VW) who try to lead research and development of operating system, DCU (or vehicle central computer) and core software and hardware systems.

It can be seen from Denso’s CASE layout that the supplier not only makes deployments in all aspects of hardware but spends on software not less than IT-backed firms.

Denso’s Investment in Hardware
The US government’s crackdown on Chinese high-tech companies shows that just developing software and applications at the upper layer is not enough, and holding basic materials, core components and basic software is the only way to be free of others.

Denso lavishes heavily on core fundamental technologies, including magnetic materials, power semiconductors, solid-state batteries, magnetic heat pumps, human-computer interaction, AI, sensors, and quantum computing.

denso 2_副本.png

In 2018, Denso invested FLOSFIA and collaborated with the latter on developing a next-generation power semiconductor material (α-Ga2O3) for vehicle application. Schottky Barrier Diode (SBD), Flosfia’s α- Ga2O3 material, can work under 600V and 10A, with rated power of 100W-1kW, outperforming SiC products in both efficiency and cost. SBD is expected to be spawned in 2020. Theoretically, SBD material is seven times more efficient than GaN in low frequency and doubles GaN in high frequency or more.

Denso has been devoted to researching automotive semiconductor technology since its IC Laboratory was set up in 1968, having made improvements in ECU, sensor and other products. In September 2017, Denso founded a subsidiary -- NSITEXE, a developer of next-generation high-performance semiconductors. DFP (data flow processor) independently developed by NSITEXE, differs totally from CPU and GPU. For practical use of DFP, Denso and NSITEXE then invested Blaize and quadric.io, two semiconductor start-ups. Blaize, founded by former workers at Intel in 2012, builds software and process architectures from the underlying layer for better AI computing. NSITEXE helps to develop an autonomous driving technology which makes instant judgment in extreme scenarios, by combining DFP and EPU from quadric.io.

Leading Tier1 suppliers from Japan and Germany often adopt IDM model and have their own chip fabrication plants, compared with IC designers focusing on prevailing FABLESS model in China. Denso Hokkaido is Denso’s key manufacturing site of semiconductor sensors. To meet the robust demand from electrification and autonomous driving markets, Denso plans expansion of its Hokkaido plant. The expansion project will break ground in July 2020 and be completed in June 2021. The number of employees will expectedly rise to about 1,150 in 2025.  

Denso’s Investment in Software
In 2025, Denso will boast 12,000 software talents worldwide; it will have more than 1,000 staffs and over 1,100 patents in autonomous driving field.

In addition to workforce enlargement for independent development, Denso also invests quite a few software firms.

denso 3_副本.png

Denso’s Big Competitive Edges in an Age of CASE
From Denso’s alliance, acquisitions and investment map as below as well as the Abstract of this report, it can be seen that Denso is sinking to research and development of core technologies and parts.


 denso 4.png
Source: Denso

Tier1 suppliers once gave an impression that they were suppliers of integrated systems for OEMs. As OEMs more set foot in system integration, Denso has turned to research and development of more basic core technologies. Weighed by new entrants from all walks of life, Denso still stays competitive on the strength of its across-the-board product matrices, economies of scale, and software and hardware synergy.

For example, Denso’s cockpit systems integrated with HMI and air-conditioning technologies will offer better user experience. This is an impossibility for the majority of companies who fail as well in high integration at the underlying layer.

 denso 5_副本.png
Source: Denso; ResearchInChina

1. Profile and R&D of Denso

1.1 Profile
1.1.1 Introduction
1.1.2 Development Course
1.1.3 Revenue Breakdown (by Customer), FY2020
1.1.4 Revenue Breakdown (by Product), FY2020
1.1.5 Revenue Target of Mobility Business, 2025
1.1.6 Alliance Strategy
1.1.7 Denso’s Business Presence in China
1.2 Denso’s Automotive Product System
1.2.1 Automotive Product System
1.2.2 Automotive Electronics
1.2.3 Main Divisions and CASE Related Products
1.3 R&D Layout and Research Direction
1.3.1 Global R&D System
1.3.2 R&D Input, FY2016-2020
1.3.3 Future R&D Input
1.3.4 R&D Orientations
1.3.5 Automotive Electronics Development Direction

2. Autonomous Driving (AD) Products and Layout

2.1 Denso’s AD Layout
2.1.1 Fields to be Covered by Denso AD Technologies in 2025
2.1.2 Denso’s AD Technology Plan
2.1.3 Denso’s AD R&D Mode
2.1.4 AD R&D Bases and Test Bases of Denso
2.2 Denso’s AD Products
2.2.1 Denso’s ADAS Product System
2.2.2 Denso Develops Next Gen Vision Sensor
2.2.3 Denso’s Stereo Vision Sensor
2.2.4 Denso’s Surround-view System
2.2.5 Denso’s Radars
2.2.6 Denso’s AVP System
2.3 AD Investment of Denso
2.3.1 Overview of Denso’s Investments in AD
2.3.2 Denso’s AD Investment Project Case I
2.3.3 Denso’s AD Investment Project Case II
2.3.4 Denso’s AD Investment Project Case III
2.3.5 Denso’s AD Investment Project Case IV

3. Smart Cockpit Products and Layout

3.1 Technical Layout of Denso Smart Cockpit
3.1.1 Technology Roadmap of Denso Smart Cockpit
3.1.2 Denso Combines HMI Technology with Air Conditioner Technology
3.1.3 Denso’s Smart Cockpit Investment I
3.1.4 Denso’s Smart Cockpit Investment II
3.2 Denso’s Smart Cockpit Products
3.2.1 Overview of Denso’s Cockpit Technologies
3.2.2 Denso’s Cockpit DCU
3.2.3 Denso’s DSM Products
3.2.3 Denso’s DSM Product: DSM for Commercial Vehicle
3.3 Terminal Products of Denso’s Smart Cockpit
3.3.1 In-Vehicle Display
3.3.2 HUD
3.3.3 Instrument
3.3.4 Car Navigation
3.3.5 Smart Communication System
3.3.6 V2X Module of Denso
3.3.7 Denso’ DCM
3.3.8 Automotive Air conditioner Controller of Denso
3.3.9 Other Cockpit Modules of Denso

4. Electrification Products and Layout

4.1 Electrification Business Layout of Denso
4.1.1 Main Products of Electrification Business of Denso
4.1.2 Revenue Target of Automotive Electrification Business of Denso
4.1.3 Direction and Target of Automotive Electrification Products of Denso
4.1.4 R&D Cooperation of Automotive Electrification Products of Denso
4.1.5 Global Market Shares of Major Electrification Products of Denso
4.1.6 Denso’s Global Layout in Electrification
4.1.7 Denso’s R&D Direction in Electrification
4.1.8 Electric Brand ELEXCORE
4.1.9 Denso’s Partnership in Automotive Electrification (I)
4.1.10 Denso’s Partnership in Automotive Electrification (II)
4.2 BMS of Denso
4.2.1 Denso’s BMS
4.2.2 NI-MH Battery Management System
4.2.3 Lithium Battery Management System
4.2.4 PHEV’s BMS (I)
4.2.5 PHEV’s BMS (II)
4.2.6 Control Module of BMS

5. Other CASE Technology Layouts

5.1 Denso MaaS
5.1.1 Denso MaaS: Establish digital twin
5.1.2 Denso MaaS: Mobility Service Terminal
5.1.3 MaaS in Fleet Management
5.1.4 Denso MaaS: Use of Real-Time Steaming Media Technology
5.1.5 Denso’s Investment Projects in MaaS Sector 
5.2 Denso’s Automotive Semiconductor Layout
5.2.1 Denso’s Automotive Semiconductor Layout I
5.2.2 Denso’s Automotive Semiconductor Layout II
5.2.3 Denso’s Automotive Semiconductor Layout III
5.3 Other CASE Investment Layout of Denso
5.3.1 OTA Investment and Partnership
5.3.2 Network Security Layout
5.3.3 Investment and Partnership, 2018-2019

6. Summary
6.1 Overview of Denso’s CASE Strategy
6.2 Competitive Advantages and Disadvantages of Denso’s CASE Strategy
6.3 Denso’s Integration Advantage Case
6.4 How Denso Succeeds
6.5 List of Software Companies Invested by Denso
6.6 Inspiration of Denso’s Development for Chinese Parts Vendors
 

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla’s big pr...

Qualcomm 8295 Based Cockpit Domain Controller Dismantling Analysis Report

ResearchInChina dismantled 8295-based cockpit domain controller of an electric sedan launched in December 2023, and produced the report SA8295P Series Based Cockpit Domain Controller Analysis and Dism...

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

Automotive Memory Chip and Storage Industry Report, 2024

The global automotive memory chip market was worth USD4.76 billion in 2023, and it is expected to reach USD10.25 billion in 2028 boosted by high-level autonomous driving. The automotive storage market...

Automotive AUTOSAR Platform Research Report, 2024

AUTOSAR Platform research: the pace of spawning the domestic basic software + full-stack chip solutions quickens. In the trend towards software-defined vehicles, AUTOSAR is evolving towards a more o...

China Passenger Car Electronic Control Suspension Industry Research Report, 2024

Research on Electronic Control Suspension: The assembly volume of Air Suspension increased by 113% year-on-year in 2023, and the magic carpet suspension of independent brands achieved a breakthrough ...

Global and China Hybrid Electric Vehicle (HEV) Research Report, 2023-2024

1. In 2025, the share of plug-in/extended-range hybrid electric passenger cars by sales in China is expected to rise to 40%. In 2023, China sold 2.754 million plug-in/extended-range hybrid electric p...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号