Global and China Automotive MLCC Industry Report, 2020-2026
  • Sep.2020
  • Hard Copy
  • USD $3,400
  • Pages:194
  • Single User License
    (PDF Unprintable)       
  • USD $3,200
  • Code: ZJF158
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,800
  • Hard Copy + Single User License
  • USD $3,600
      

As one of the most widely used passive components, MLCC commands approximately 40% of the capacitor market. MLCC finds broad application in fields like communication, consumer electronics, automobile and military, where the robust demand conduces to the expanding MLCC market.

A staggering 64% or so of MLCCs are consumed by consumer electronics, especially smartphones which occupy 39% of total consumption. In iPhone’s case, smartphones with higher configuration use more MLCCs, e.g., an iPhone X needs as many as 1,100 MLCCs compared with an iPhone 5S using 400 pieces. Besides, the portable and intelligent wearables such as TWS headphones and smart watches have drawn much attention from the market over recent years, producing significant demand for MLCCs.

MLCC 1_副本.png

As commercial use of 5G is at a gallop, 5G-enabled smartphones will pack more MLCCs than 4G ones. Examples include a Sub-6Ghz 5G smartphone that uses 10%-15% more MLCCs and an mmWave 5G phone adding 20%-30%. Meanwhile, 5G smartphones’ higher power consumption further drives up demand for high-end, micro/ultra-micro (0201, 01005, etc.) MLCCs with large capacity and low power consumption.

MLCC 2_副本.png

During the faster construction of 5G in 2020, a larger number of 5G base stations to be built and more MLCCs per such a station compared with 4G ones are two factors behind the rising demand for MLCCs. By 2023, global communication base stations’ demand for MLCCs will be 2.1-fold of that in 2019, estimated by Taiyo Yuden. In the meantime, internet of things (IoT) that requires far more stable connectivity will be a beneficiary of low-latency 5G network. A study of VENKEL shows that a terminal needs over 75 MLCCs on average, from which it can be foreseen that more and more connected IOT devices will, beyond doubt, spur the MLCC market to grow.

The development of new energy vehicle and ADAS drives MLCC into a new blue ocean. A common car needs around 3,000 or 4,000 MLCCs while a hybrid/plug-in hybrid vehicle bears around 12,000 pieces and a battery electric vehicle carries virtually 18,000 pieces.

Among vehicle electronic systems, ADAS which applies more MLCCs could collect, detect, recognize and track changed data inside and outside of the vehicle in the shortest time via sensors on the vehicle and helps the driver beware of potential dangers to operate correctly and safely by combining navigation map data to calculate and analyze. Wider coverage of 5G network will be another solution to latency problem. As more and more vehicles carry ADAS that tends to be more intelligent, the demand for MLCCs will multiply.

New energy vehicle with a larger number of control modules like ECU need more passive components to support electronic systems, with a new energy vehicle in want of at least 10,000 MLCCs. With the roll-out of timetables for elimination of ICE vehicles across the world in recent years, new energy vehicles have boasted higher penetration, coupled with more use of MLCCs by a single vehicle, together stimulating the demand for automotive MLCCs. 

Of a wide range of automotive MLCC models, those with size ranging from 0402 to 2220 are in use while 0603, 0805 and 1206 get most utilized. Despite unconcern about size of MLCCs, automotive market has a high demanding on them in safety parameters (reliability, service life and failure rate) as well as working temperature, humidity, climate and vibration resistance. Automotive market poses a high entry barrier to MLCC which must be subject to a set of automotive standards (AEC-Q200) and pass quality certification.

It is in the MLCC market that leading players include Murata, Samsung Electro-Mechanics, Yageo, Walsin Technology, Taiyo Yuden, TDK, Kyocera and Chinese Mainland companies like Fenghua Advanced Technology and Chaozhou Three-circle. Since 2016, few MLCC vendors like Murata and TDK have shifted to focus on automotive MLCC, a promising and lucrative high-tech market. This move disrupts the global passive components supply chain and makes low- and mid-end customers turn to companies like Yageo, Fenghua Advanced Technology and Chaozhou Three-circle.

Some vendors have pivoted to the automotive MLCC market.

MLCC 3_副本.png

Murata is the MLCC vendor with the highest market share in the world (approximately 56% of the automotive MLCC market), boasting annual capacity up to 1,100 billion MLCCs or so. In recent years, the company has slashed the capacity of low-end MLCCs while ramping up production of automotive and other high-end products. Murata quickens the R&D and mass production of MLCCs for high-end consumer electronics whilst expediting to launch automotive products. In 2019, Murata began to spawn 008004, which will be used in 5G flagship phones of Apple and Huawei. In April 2020, Murata started mass-production of two new multilayer ceramic capacitors for automotive use -- the NFM15HC105D0G3, which is the world's smallest 0402 size (1.0×0.5mm) three-terminal low-ESL multilayer ceramic capacitor, and the NFM18HC106D0G3, which is the three-terminal low-ESL multilayer ceramic capacitor with the world's highest capacitance of 10μF in 0603 size (1.6×0.8mm), suitable for ADAS and autonomous driving.
 
The second-ranked Samsung Electro-Mechanics by MLCC market share in the world (ranking fourth in the automotive MLCC market with about 6% share) has followed suit over the recent years, like squeezing out low-end capacity and stepping up the deployment of high-end products. In July 2020, the company developed five new types of MLCCs, including three types for power systems and two types for anti-lock braking systems, which will be available to global automakers in future. Besides building a dedicated automotive production line at the Busan plant, Samsung Electro-Mechanics is pressing ahead with construction of a new plant in Tianjin, China.

Given its inferiority in MLCCs for consumer electronics, TDK cancelled orders for 700 million MLCCs covering about 360 models, and committed itself to mid-to-high-end products in 2017 as the first one aggressively exploring the automotive MLCC market, where TDK now seizes about 25% shares.

MLCC vendors in Mainland China have been developing by leaps and bounds in recent years, especially Fenghua Advanced Technology is one of few Chinese MLCC vendors offering a full range of MLCCs covering 01005-2220 and above sizes with advantages in production scale and technical processes; but it still targets consumer electronics. In 2018, the company launched products in line with the AEC-Q200 standard, but still posing no threat to Japanese and Korean peers due to its weak foundation.

Since 2018, traditional automakers worldwide have begun to deploy electric vehicle manufacturing on a large scale, and the governments have introduced timetables for elimination of ICE vehicle. As the number of MLCCs used in an electric vehicle is 6 times that in an ordinary car, MLCCs are bound to be much sought after. Hundreds of carmakers require automotive MLCCs which are only offered by a few automotive MLCC vendors, inevitably leading to the tight supply of automotive MLCCs in the next two years or three, and a big challenge to any automaker who is in readiness for capacity expansion of electric vehicles and even a mission impossible for emerging automakers because leading MLCC suppliers will give priority to key automakers. The MLCCs from tier-II suppliers as a last resort may cause quality issues and enormous maintenance costs.

Global and China Multi-layer Ceramic Capacitor (MLCC) Industry Report, 2020-2026 highlights the following:
20120114.gifMLCC industry (definition, classification, industry chain, technology trend, etc.);
20120114.gifGlobal and Chinese MLCC markets (size and forecast, competitive landscape, market segments, etc.);
20120114.gifAutomotive MLCC market (size and forecast, competition pattern, etc.);
20120114.gifLeading automotive MLCC vendors in China and beyond (profile, operation, business, new products, etc.);
20120114.gifUpstream MLCC formula vendors (profile, operation, business, new products, etc.)

1. Definition and Classification of MLCC
1.1 Capacitor
1.1.1 Classification of Capacitors
1.1.2 Comparison between Capacitors
1.1.3 Trend for Market Share of Various Capacitors
1.2 MLCC
1.2.1 Classification of MLCC
1.2.2 MLCC Fabrication Process
1.2.3 MLCC Models
1.2.4 MLCC Industry Chain
1.3 Development Trend

2. MLCC Market
2.1 MLCC Market
2.1.1 Global MLCC Shipment
2.1.2 Market Structure
2.1.3 Chinese MLCC Market Size
2.2 MLCC Capacity & Competition
2.2.1 Top Ten MLCC Vendors
2.2.2 Competitive Landscape
2.2.3 Market Share
2.2.4 Production Expansion Plans of Key Vendors
2.2.5 Products Distribution of Key Vendors
2.2.6 Presence of Key Vendors in China
2.3 MLCC Price
2.4 MLCC for Consumer Electronics
2.4.1 MLCC for Consumer Electronics -- 5G
2.4.2 MLCC for Consumer Electronics -- Product Iteration
2.4.3 MLCC for Consumer Electronics -- Wearable
2.5 MLCC for Industrial Use
2.5.1 MLCC for Industrial Use -- 5G Base Station
2.5.2 MLCC for Industrial Use -- IoT

3. Automotive MLCC Market
3.1 MLCC for Vehicle
3.1.1 Tendency of Automotive Demand for MLCC
3.1.2 MLCC for Automotive -- ADAS
3.1.3 MLCC for Automotive -- New Energy Vehicle
3.1.4 AEC-Q200
3.2 Automotive MLCC Market Size
3.3 Competition Pattern
3.3.1 Product Layout
3.3.2 Production Expansion Plan
3.3.3 Involvement of Chinese Manufacturers

4. MLCC Vendors
4.1 Murata Electronics
4.1.1 Profile
4.1.2 Performance
4.1.3 Revenue Structure
4.1.4 Automotive MLCC
4.1.5 Footprints in China
4.1.6 Production Capacity Plan
4.1.7 Automotive MLCC -- New Product
4.2 Samsung Electro-Mechanics
4.2.1 Profile
4.2.2 Performance
4.2.3 Revenue Structure (by Business)
4.2.4 Revenue Structure (by Region)
4.2.5 Capacity and Output
4.2.6 Automotive MLCC
4.2.7 MLCC Expansion Plan
4.2.8 Samsung Electro-Mechanics (Tianjin)
4.3 TDK
4.3.1 Profile
4.3.2 Operation
4.3.3 Revenue Structure (by Business)
4.3.4 Revenue Structure (by Region)
4.3.5 Automotive MLCC
4.3.6 Xiamen TDK
4.4 Kyocera
4.4.1 Profile
4.4.2 Operation
4.4.3 Revenue Structure (by Business)
4.4.4 Revenue Structure (by Region)
4.4.5 Automotive MLCC
4.4.6 AVX Automotive MLCC
4.4.7 Automotive MLCC Production Expansion Plan
4.4.8 Shanghai KYOCERA Electronics Co., Ltd.
4.5 Taiyo Yuden
4.5.1 Profile
4.5.2 Performance
4.5.3 Revenue Structure (by Business)
4.5.4 Revenue Structure (by Region)
4.5.5 MLCC Technology Direction
4.5.6 Automotive MLCC
4.5.7 Taiyo Yuden (Guangdong) Co., Ltd.
4.5.8 Commercialization of 1,000 μFMLCC
4.5.9 MLCC Expansion Plan
4.6 KEMET
4.6.1 Profile
4.6.2 Operation
4.6.3 Revenue Structure (by Business)
4.6.4 Revenue Structure (by Region)
4.6.5 Automotive MLCC
4.7 Walsin Technology
4.7.1 Profile
4.7.2 Operation
4.7.3 Revenue Structure (by Business)
4.7.4 Revenue Structure (by Region)
4.7.5 Production and Sales by Product
4.7.6 Automotive MLCC
4.7.7 Dongguan Walsin Technology Electronics Co., Ltd.
4.8 Yageo
4.8.1 Profile
4.8.2 Performance
4.8.3 Revenue Structure (by Business)
4.8.4 Revenue Structure (by Region)
4.8.5 Production and Sales by Product
4.8.6 Key Products and Applied Fields
4.8.7 MLCC Production Layout
4.8.8 Major Customers
4.8.9 Automotive X8R Dielectric Ceramic Capacitor
4.8.10 Yageo Acquired KEME
4.9 HolyStone
4.9.1 Profile
4.9.2 Operation
4.9.3 Revenue Structure (by Business)
4.9.4 Revenue Structure (by Region)
4.9.5 Global Presence
4.9.6 Automotive MLCC
4.9.7 Automotive MLCC Application
4.9.8 MLCC Expansion Plan
4.10 Fenghua Advanced Technology
4.10.1 Profile
4.10.2 Organization Structure
4.10.3 Operation
4.10.4 Revenue Structure
4.10.5 Production and Sales by Product
4.10.6 Automotive MLCC
4.10.7 MLCC Production Expansion Project
4.11 Nippon Chemi-Con
4.11.1 Profile
4.11.2 Operation
4.11.3 Revenue Structure (by Product)
4.11.4 Revenue Structure (by Region)
4.11.5 Automotive MLCC
4.11.6 Automotive MLCC in KVF Series
4.11.7 Automotive MLCC in KVD Series

5. Manufacturers of MLCC-related Materials
5.1 Sakai Chemical
5.1.1 Profile
5.1.2 Key Products
5.2 Ferro
5.2.1 Profile
5.2.2 Key Products-MLCC Formula Powder
5.2.3 Key Products-MLCC Plasma
5.3 Prosperity Dielectrics Co., Ltd. (PDC)
5.3.1 Profile
5.3.2 Operation
5.3.3 MLCC Ceramic Powder
5.4 Shandong Sinocera Functional Material
5.4.1 Profile
5.4.2 Operation
5.4.3 Revenue Structure (by Products)
5.4.4 MLCC Dielectric Materials
5.4.5 MLCC Plasma Products
5.4.6 Yichang Huahao New Materials Technology Co., Ltd Is Founded to Ensure Supply of MLCC Powder
5.4.7 MLCC Production Expansion
5.5 Nippon Chemical Industrial Co., Ltd.
5.5.1 Profile
5.5.2 Operation
5.5.3 MLCC Dielectric Ceramic Powder
5.6 SHOEI
5.6.1 Profile
5.6.2 Key Products
5.7 Sumitomo Metal Industries
5.7.1 Profile
5.7.2 Operation
5.7.3 Key Products
5.7.4 Footprints in China
5.8 Noritake
5.8.1 Profile
5.8.2 Operation
5.8.3 MLCC Plasma
5.8.4 MLCC Ceramic Powder
 

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla’s big pr...

Qualcomm 8295 Based Cockpit Domain Controller Dismantling Analysis Report

ResearchInChina dismantled 8295-based cockpit domain controller of an electric sedan launched in December 2023, and produced the report SA8295P Series Based Cockpit Domain Controller Analysis and Dism...

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

Automotive Memory Chip and Storage Industry Report, 2024

The global automotive memory chip market was worth USD4.76 billion in 2023, and it is expected to reach USD10.25 billion in 2028 boosted by high-level autonomous driving. The automotive storage market...

Automotive AUTOSAR Platform Research Report, 2024

AUTOSAR Platform research: the pace of spawning the domestic basic software + full-stack chip solutions quickens. In the trend towards software-defined vehicles, AUTOSAR is evolving towards a more o...

China Passenger Car Electronic Control Suspension Industry Research Report, 2024

Research on Electronic Control Suspension: The assembly volume of Air Suspension increased by 113% year-on-year in 2023, and the magic carpet suspension of independent brands achieved a breakthrough ...

Global and China Hybrid Electric Vehicle (HEV) Research Report, 2023-2024

1. In 2025, the share of plug-in/extended-range hybrid electric passenger cars by sales in China is expected to rise to 40%. In 2023, China sold 2.754 million plug-in/extended-range hybrid electric p...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号