Automotive Cockpit SoC Technology and Application Research Report, 2020
  • Sept.2020
  • Hard Copy
  • USD $3,000
  • Pages:82
  • Single User License
    (PDF Unprintable)       
  • USD $2,800
  • Code: LY010
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,200
  • Hard Copy + Single User License
  • USD $3,200
      

Cockpit SoC Supports More Displays, Beefs up AI, and Improves Functional Safety

Intelligent vehicle E/E architecture ushers in a period of intra-domain integration to trans-domain convergence and to central computer from the distributed one.

SOC 1.png

For cockpit domain, the intra-domain integration calls for powerful cockpit SoC which caters to the current cockpits’ needs to support more displays, enable more AI features and fuse with ADAS, have safer functionality, among others.

Support for More Displays
Against the trend of one core enabling multiple screens, it remains a decisive factor to being chosen by the user that how many displays a cockpit SoC can support. The third-generation Qualcomm Snapdragon cockpit SoC based on versatile CPU and GPU is an enabler for as many as six to eight displays.

Samsung Exynos Auto V9 processor is in favor of up to six in-vehicle screens and twelve cameras synchronously, which has been already found in Audi smart cockpits.

Designed for smart cockpit, SemiDrive X9 series unveiled by Nanjing Semidrive Technology Co., Ltd in 2020 support eight FHD displays and twelve cameras.

At CES2020, NXP showcased its multi-display solution supporting as many as 11 screens that are enabled by dual i.MX 8QuadMax.

Support for AI
Undoubtedly, NVIDIA stays ahead of its peers as concerns support for AI. NVIDIA rolled out CUDA in 2007 and had the idea of fostering an ecosystem via CUDA then, which is helpful to both hardware sales and its superiority in software as well as to user loyalty. Despite its cockpit SoC gets a clear edge in deep learning, NVIDIA enjoys not big a share in the cockpit processor market because of its automotive business focus on autonomous driving chips.

Through acquisition of Freescale, NXP is in possession of a machine learning expert team, i.e., CogniVue, an image recognition IP development team (acquired by Freescale in September 2015) based in Ottawa, Canada. NXP’s eIQ automated deep learning (DL) toolkit enables the developer to introduce DL algorithms to application programs, and meets the strict automotive standards.

SOC 2.png

Apart from its efforts in nurturing AI capabilities, NXP has been paying attention to AI defects. Deep learning employs probabilities to recognize objects and the results are inexplicable, which is disastrous to cars with a high demanding on safety. NXP has been studying a method called “explicable AI (xAI)” that extends the machine learning reasoning and probability computing capabilities through addition of more rational and humanlike decision-making methods and extra deterministic dimensions, and that combines all merits of AI with reasoning mechanism to imitate human reaction.

Fusion with ADAS for Higher Functional Safety
Some ADAS features like surround view parking, pedestrian and obstacle recognition tend to be integrated in the cockpit domain, needing the cockpit SoC to consider ADAS related capabilities.

R-Car H3, for example, gets largely utilized in cockpit and can also cope with complex functions such as obstacle detection, driver status recognition, danger prediction and avoidance.

More and more smart cockpits are added with HUD, especially the latest AR-HUD integrated with ADAS, delivering capabilities like following distance warning, line press warning, traffic lights monitoring, ahead-of-time lane change, pedestrian warning, road mark display, lane departure warning, obstacles ahead, and driver status monitoring.

There will be higher requirements on functional safety once cockpit SoC is added with some ADAS features, which will, beyond doubt, pose greater challenge to the cockpit SoC suppliers.

1 Cockpit SoC and Its Application
1.1 Overview of Cockpit SoC
1.2 Supply Relationship of Low-to-mid-end/High-end Intelligent Cockpit SoC
1.3 Low-to-mid-end Cockpit Chip is an Obscure Corner but a Mainstay of the Market
1.4 Comparison (I) between Main Cockpit SoCs
1.5 Comparison (II) between Main Cockpit SoCs
1.6 Ranking of Cockpit Processors by CPU Compute
1.7 Ranking of Cockpit Processors by GPU Compute
1.8 Main Overseas Cockpit Platforms and the Processors Used
1.9 Automotive Infotainment Supply Chain

2 NXP and Its Cockpit SoC
2.1 NXP Cockpit Processor
2.2 Main Clients for NXP i.MX Processor
2.3 Monopoly of i.MX6 Once in the Low- and Medium-end Markets
2.4 Key Parameters of i.MX8 Series
2.5 Typical Application Schemes of NXP i.MX Cockpit Chips 
2.6 Latest Advances in NXP Cockpit Chips
2.7 NXP i.MX Chip Shipments
2.8 NXP i.MX Partner Ecosystem
2.9 Operating Systems NXP i.MX Supports
2.10 AI Algorithms NXP i.MX Supports
2.11 NXP i.MX Products and Future Cockpit Systems

3 Texas Instruments and Its Cockpit SoC
3.1 TI Cockpit Chip
3.2 TI has Won a Place in Mid-end Cockpit Processor Market
3.3 Parameters of Jacinto 6 Family
3.4 Jacinto Cockpit Solutions and Partners

4 Renesas and Its Cockpit SoC
4.1 Profile
4.2 Chip Business Layout
4.3 R-CAR Family for Cockpit Processor
4.4 Cockpit Chip Product Lines
4.5 Comparison of Performance between Cockpit SoCs
4.6 Latest News about Cockpit Chip
4.7 Application in MBUX
4.8 Cooperation with Volkswagen

5 Qualcomm and Its Cockpit SoC
5.1 First- and Second-generation Cockpit SoCs
5.2 Third-generation Cockpit SoC
5.3 AI Features 820A Supports
5.4 Qualcomm 855A
5.5 Qualcomm SA8155p
5.6 Mass-produced Vehicles with Qualcomm 820am
5.7 OEMs Using Qualcomm Cockpit Chips 

6 Intel and Its Cockpit SoC
6.1 Intel A3900 Processor
6.2 Main Vehicle Models with Intel A3900 Family

7 Samsung and Its Cockpit SoC
7.1 Cockpit Processors
7.2 Automotive SoC Roadmap
7.3 Application Cases of Automotive SoC

8 NVIDIA and Its Cockpit SoC
8.1 NVIDIA Parker
8.2 NVIDIA Chips and Mercedes-Benz/Audi
8.3 Mercedes-Benz MBUX and Nvidia Chips

9 Telechips and Its Cockpit SoC
9.1 Featured Products: Low-end Chips and LCD Instruments
9.2 Application Models in China Market
9.3 Cockpit Chip: Dolphin Family
9.4 Cockpit Application Schemes

10 MediaTek and Its Cockpit SoC
10.1 Cockpit Chips
10.2 Rapid Progress in MT2712
10.3 MT2712 and Lightweight Virtual Machines

11 SemiDrive and Its Cockpit SoC
11.1 Block Diagram of X9 Application
11.2 X9 Family
11.3 Four Core Technologies of X9

12 Development Trends for Cockpit SoC and Architecture
12.1 Development Trends for Intelligent Cockpit Industry
12.2 BMW Cockpit Electronics Architecture
12.3 BMW TCB, Gateway and Head Unit Architecture
12.4 BMW's Latest Head Unit: MGU
12.5 Mercedes-Benz NTG6 Features a Dual Architecture
12.6 Audi MIB Features a Dual System Architecture
12.7 Mid-end Chips Support Single-display Linux+Android Dual System
12.8 Single Hardware System for Land Rover
12.9 820am System for Land Rover Defender
12.10 Summary
 

Automotive AI Box Research Report, 2026

Automotive AI Box Research: A new path of edge AI accelerates This report studies the current application status of automotive AI Box from the aspects of scenario demand, product configuration, and i...

Automotive Fragrance and Air Conditioning System Research Report, 2025

Automotive Fragrance and Air Purification Research: Intelligent Fragrance Equipment to Exceed 4 Million Units by 2030, "All-in-One" Integrated Purification Becomes Mainstream The "Automotive Fragranc...

Intelligent Vehicle Cockpit-driving Integration (Cockpit-driving-parking) Industry Report, 2025

Cockpit-Driving Integration Research: 36% CAGR by 2030, Single-Chip Cockpit-driving integration Solutions Enter Mass Production ResearchInChina releases the "Intelligent Vehicle Cockpit-driving Integ...

Research Report on Overseas Layout of Chinese Passenger Car OEMs and Supply Chain Companies, 2025

Automotive Overseas Expansion Research: Accelerated Release of OEM Overseas Production Capacity, Chinese Intelligent Supply Chain Goes Global This report conducts an in-depth analysis of the current ...

Passenger Car Intelligent Steering Industry Research Report, 2025-2026

Intelligent steering research: Rear-wheel steering prices drop to RMB200,000-250,000 1. Rear-wheel steering installations increased by 36.5% year-on-year. From January to October 2025, the number of...

Global Autonomous Driving Policies & Regulations and Automotive Market Access Research Report, 2025-2026

Research on Intelligent Driving Regulations and Market Access: New Energy Vehicle Exports Double, and "Region-Specific Policies" Adapt to Regulatory Requirements of Various Countries in A Refined Mann...

Two-wheeler Intelligence and Industry Chain Research Report, 2025-2026

Two-Wheeler Electric Vehicle Research: New National Standard Drives Intelligent Popularization, AI Agent Makes Its Way onto Vehicles ResearchInChina releases the "Two-wheeler Intelligence and Industr...

China Smart Door and Electric Tailgate Market Research Report, 2025

Smart Door Research: Driven by Automatic Doors, Knock-Knock Door Opening, etc., the Market Will Be Worth Over RMB100 Billion in 2030. This report analyzes and researches the installation, market size...

New Energy Vehicle Thermal Management System Industry Research Report, 2025-2026

Policy and Regulation Drive: Promoting the Development of Electric Vehicle Thermal Management Systems towards Environmental Compliance, Active Safety Protection, and Thermal Runaway Management Accord...

Intelligent Vehicle Redundant Architecture Design and ADAS Redundancy Strategy Research Report, 2025-2026

Research on Redundant Systems: Septuple Redundancy Architecture Empowers High-Level Intelligent Driving, and New Products Such as Corner Modules and Collision Unlock Modules Will Be Equipped on Vehicl...

Passenger Car Mobile Phone Wireless Charging Research Report, 2025

Automotive Wireless Charging Research: Domestic Installation Rate Will Exceed 50%, and Overseas Demand Emerges as Second Growth Driver. The Passenger Car Mobile Phone Wireless Charging Research Repor...

Automotive 4D Radar Industry Research Report 2025

4D radar research: From "optional" to "essential," 4D radar's share will exceed 50% by 2030. 1. 4D imaging radar has transformed from an "optional" to a "must-have" sensor. 4D radar adds the detecti...

China Automotive Multimodal Interaction Development Research Report, 2025

Research on Automotive Multimodal Interaction: The Interaction Evolution of L1~L4 Cockpits ResearchInChina has released the "China Automotive Multimodal Interaction Development Research Report, 2025"...

Automotive Vision Industry Report, 2025

Automotive Vision Research: Average Camera Installation per Vehicle Reaches 5.2 Units, and Front-View Tricam Installation Exceeds 1.2 Million Sets. From January to September 2025, the total installa...

Automotive Infrared Night Vision System Research Report, 2025

Automotive night vision research: The rise of infrared AEB, with automotive infrared night vision experiencing a 384.7% year-on-year increase from January to September. From January to September 2025...

New Energy Vehicle Cross-Domain (Electric Drive System and Powertrain Domain) Integration Trend Report 2025-2026

Electric Drive and Powertrain Domain Research: New technologies such as three-motor four-wheel drive, drive-brake integration, and corner modules are being rapidly installed in vehicles. Electric dri...

Analysis on Desay SV and Joyson Electronic's Electrification, Connectivity, Intelligence and Sharing, 2025

Research on Desay SV and Joyson Electronic: Who is the No.1 Intelligent Supplier? Both Desay SV and Joyson Electronic are leading domestic suppliers in automotive intelligence. "Analysis on Desay SV ...

OEMs and Tier 1 Suppliers' Cost Reduction and Efficiency Enhancement Strategy Analysis Report, 2025

ResearchInChina released the "OEMs and Tier 1 Suppliers' Cost Reduction and Efficiency Enhancement Strategy Analysis Report, 2025", summarizing hundreds of cost reduction strategies to provide referen...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号