OEM Cyber Security Layout Report, 2020
  • Dec.2020
  • Hard Copy
  • USD $3,400
  • Pages:130
  • Single User License
    (PDF Unprintable)       
  • USD $3,200
  • Code: JH001
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,800
  • Hard Copy + Single User License
  • USD $3,600
      

Research into automotive cyber security: server and digital key are the ports vulnerable to attacks, for which OEMs have stepped up efforts in cyber security.

With advances in the CASE (Connected, Autonomous, Shared, and Electrified) trend, cars are going smarter ever with functional enrichment. Statistically, the installation rate of telematics feature to new cars in China is over 50% from January to October of 2020, a figure projected to rise to 75% or so in 2025. In terms of functionality, intelligent cockpit and advanced automated driving become trending, and the features such as multi-modal interaction, multi-display interaction, 5G connectivity, V2X, OTA and digital key finds ever broader application alongside the soaring number of vehicle control codes and more port vulnerabilities to safety threat.

Currently, the automotive cyber security events arise mainly from attacks on server, digital key, mobile APP, OBD port among others.

Server acts as the most important port for cyber security, which is exposed to the attack by hackers on operating system, database, TSP server, OTA server and the like, thus issuing in data tampering, damage and vehicle safety accidents. Most tools of assault on servers are remotely accessible with lower costs, while the data storage over servers is of paramount importance, all of which lead to often a rather high share of attacks on servers.

Digital key, as the second port that matters most to cyber security, is a common media subject to vehicle intrusion and theft. In 2020, there will be 300,000 Bluetooth digital key installs in China, coupled with an installation rate at about 4%, with such more functionalities besides lock/unlock & start as account log-in, key sharing, vehicle trajectory record, and parcel delivery to cars, which has ever more implications on vehicle safety.

B 信息安全 1_副本.png

Different auto brands are subject to varied attack on vehicle security.

The smarter a car is, the more vulnerable to security attacks will be. Amid the intelligence trend, all OEMs, whatever Mercedes-Benz, BMW, Audi, VW, Toyota, Honda or Hyundai, have varied exposure to security attacks.

B 信息安全 2_副本.png

In March 2020, key encryption approaches of OEMs like Toyota, Hyundai and KIA were reported to have limitations with a possibility of intrusions and thefts largely due to the vulnerabilities of TI’s DST80 encryption system employed by them. A hacker just stands near the car that packs DST80 remote control key, using the inexpensive Proxmark RFID reader/transmitter for the ‘identity theft’ of the key and thus getting the encrypted information.

B 信息安全 3.png

OEM quicken their presence in cyber security

To address serious challenges in automotive cyber security, the OEMs are sparing no efforts in security improvement in many aspects: a) information management inside the company and optimization of R&D process; 2) to build a team intended for cyber security; 3) cyber security protection of telematics.

> European and American OEMs: Diversified deployments of cyber security protection
The automakers from Europe and America are pushing ahead with cyber security construction roundly with technical superiorities, with a tightened control on information security management inside the company apart from improvements in cyber security protection of telematics. As concerns team construction, the majority of European and American OEMs as usual set up either an independent cyber security division or a subsidiary to ensure information security during a vehicle lifespan.

Mercedes-Benz, for instance, has such actions for cyber security in the three below:
Cloud computing: vehicle data protection enabled by a cloud platform through which the car owner takes control of data openness to the outside while driving, and at the same time relevant information will be eliminated automatically after the car owner leaves his/her car;
Factory: partnership with telecom carriers and equipment vendors to set up intelligent vehicle manufacturing factories with production data safety enabled by 5G mobile network;
Vulnerability protection: joins forces with third-party cybersecurity providers to test and repair the potential vulnerabilities of intelligent connected vehicle.

> Japanese and Korean OEMs: with a more focus on cyber security protection and management inside the company

Nissan Motor, for example, proceeds with intro-company management on information security and perfects the regulations concerned. Over the recent years, Nissan has been improving its R&D management system and cyber security platform, with its Tel Aviv-based joint innovation laboratory and collaborations with Israeli start-ups on cyber security testing and study. As yet, Nissan has more than ten cooperative joint prototype projects.

> Chinese OEMs: the emerging forces go ahead of the rest

The emerging carmakers are commendable in cyber security protection. Cases include XPENG Motors that boast concurrent deployments over cloud, vehicle and mobile phone by building a security team on its own and the partnerships with Aliyun, Irdeto, and Keen Security Lab of Tencent in order for a proactive protection system; and NIO that has built a X-Dragon multi-dimensional protection system through a self-owned security team and multi-party cooperation.

Also, the time-honored Chinese automakers follow suit, such as Dongfeng Motor, SAIC, GAC and BAIC that all prioritize the security stewardship during their life cycle. As concerns its overall deployment, SAIC, for example, incorporates its subordinates into the group’s cyber security protection and management system and applies the data encryption software (GS-EDS system) with one accord for data safety as a whole; secondly, SAIC builds a cloud platform independently and a proprietary cloud computing center delivering cloud-based security services; last, SAIC founded SAIC Lingshu Software Co., Ltd in charge of developing basic technology platform and sharpening software R&D competence.

B 信息安全 4_副本.png

OEMs have ever broader cooperation in cyber security.

In addition to security enhancement, OEMs are vigorously seeking for external collaborations on vehicle, communication, platform, data, and application, to name a few.

B 信息安全 5_副本.png

1. Overview of IoV Cyber Security 
1.1 Overview
1.1.1 Definition
1.1.2 IoV Cyber Security Protection
1.2 IoV Cyber Security Technology Application
1.2.1 T-BOX Safety Technology Application
1.2.2 IVI Safety Technology Application
1.2.3 Safety Technology Application of Digital Key System
1.2.4 PKI Technology Application for Car Cloud Network Communication Security
1.2.5 FOTA Safety Technology Application for Onboard System
1.3 Automotive Cyber Security Standard Development at Home and Abroad
1.3.1 Overview of Automotive Cyber Security Standard Development in China and the World
1.3.2 Major International Policies and Regulations on IoV Cyber Security
1.3.3 Major European Policies and Regulations on IoV Cyber Security
1.3.4 Major American and Japanese Policies and Regulations on IoV Cyber Security
1.3.5 Chinese IoV Cyber Security Standard System Architecture
1.3.6 Chinese IoV Cyber Security Standard Construction
1.4 Status Quo and Trend of Chinese Automotive Cyber Security 
1.4.1 Impact of  CASE on Cyber Security
1.4.2 Knowledge of Industry Insiders on Status Quo of IoV Cyber Security
1.4.3 Impact of Vehicle E/E Architecture on Cyber Security
1.4.4 Automotive Cyber Security Technology Development Strategy: Cloud
1.4.5 Automotive Cyber Security Technology Development Strategy: Communication
1.4.6 Automotive Cyber Security Technology Development Strategy: Vehicle

2. Status Quo of Automotive Cyber Security Industry 
2.1 Analysis of OEM Cyber Security Events
2.1.1 Analysis of OEM Cyber Security Events
2.1.2 Analysis of OEM Cyber Security Events: Event Summary
2.1.3 Analysis (I) of OEM Cyber Security Event (Application)
2.1.4 Analysis (II) of OEM Cyber Security Event (Application)
2.1.5 Analysis (III) of OEM Cyber Security Event (Platform)
2.1.6 Analysis (IV) of OEM Cyber Security Event (Platform)
2.1.7 Analysis (V) of OEM Cyber Security Event (Vehicle)
2.1.8 Analysis (VI) of OEM Cyber Security Event (Vehicle)
2.1.9 Analysis (VII) of OEM Cyber Security Event (Communication)
2.1.10 Analysis (VIII) of OEM Cyber Security Event (Communication)
2.2 Comparison of OEM Cyber Security Layouts
2.2.1 European and American OEMs
2.2.2 Japanese and Korea OEMs
2.2.3 Chinese OEMs
2.3 Cyber Security Collaborations of OEMs
2.3.1 European and American OEMs
2.3.2 Japanese and Korea OEMs 
2.3.3 Chinese OEMs
2.3.4 Chinese Automotive Cyber Security Industry Map 

3. Cyber Security Layouts of European and American OEMs
3.1 Mercedes-Benz
3.1.1 Cyber Security Layout
3.1.2 Cyber Security Technology Route
3.1.3 Cyber Security Partners
3.2 BMW
3.2.1 Cyber Security Layout
3.2.2 Cyber Security R&D System Construction
3.2.3 Cyber Security Partners
3.3 Audi
3.3.1 Cyber Security Layout
3.3.2 Cyber Security R&D System Construction
3.3.3 Cyber Security Partners
3.4 VW
3.4.1 Cyber Security Layout
3.4.2 Cyber Security R&D System Construction
3.4.3 Cyber Security Partners
3.5 Volvo
3.5.1 Cyber Security Layout
3.5.2 Cyber Security R&D System Construction
3.5.3 Cyber Security Partners
3.6 Ford
3.6.1 Cyber Security Layout
3.6.2 Cyber Security R&D System Construction
3.6.3 Cyber Security Partners
3.7GM
3.7.1 Cyber Security Layout
3.7.2 Cyber Security R&D System Construction
3.7.3 Cyber Security Partners

4. Cyber Security Layout of Japanese and Korean OEMs
4.1 Toyota
4.1.1 Cyber Security Layout
4.1.2 Cyber Security Technology Route
4.1.3 Cyber Security Partners
4.2 Honda
4.2.1 Cyber Security Layout
4.2.2 Cyber Security R&D System Construction
4.2.3 Cyber Security Partners
Software
4.3 Nissan
4.3.1 Cyber Security Layout
4.3.2 Cyber Security R&D System Construction
4.3.3 Cyber Security Partners
4.4 Hyundai
4.4.1 Cyber Security Layout
4.4.2 Cyber Security Technical Route
4.4.3 Cyber Security Partners

5. Cyber Security Layout of Chinese OEMs
5.1 Xpeng Motors
5.1.1 Cyber Security Layout
5.1.2 Cyber Security Technology Route
5.1.3 Cyber Security Partners
5.2 NIO
5.2.1 Cyber Security Layout
5.2.2 Cyber Security Technology Route
5.2.3 Cyber Security Partners
5.3 Lixiang
5.3.1 Cyber Security Layout
5.3.2 Cyber Security Technology Route
5.3.3 Cyber Security Partners
5.4 WM Motor
5.4.1 Cyber Security Layout
5.4.2 Cyber Security Technology Route
5.4.3 Cyber Security Partners
5.5 Dongfeng Motor
5.5.1 Cyber Security Layout
5.5.2 Cyber Security Technology Route
5.5.3 Cyber Security Partners
5.6 SAIC
5.6.1 Cyber Security Layout
5.6.2 Cyber Security Technology Route
5.6.3 Cyber Security Partners
5.7 BAIC
5.7.1 Cyber Security Layout
5.7.2 Cyber Security Technology Route
5.7.3 Cyber Security Partners
5.8 GAC
5.8.1 Cyber Security Layout
5.8.2 Cyber Security Technology Route
5.8.3 Cyber Security Partners
 

Research Report on Overseas Cockpit Configuration and Supply Chain of Key Models, 2025

Overseas Cockpit Research: Tariffs stir up the global automotive market, and intelligent cockpits promote automobile exports ResearchInChina has released the Research Report on Overseas Cockpit Co...

Automotive Display, Center Console and Cluster Industry Report, 2025

In addition to cockpit interaction, automotive display is another important carrier of the intelligent cockpit. In recent years, the intelligence level of cockpits has continued to improve, and automo...

Vehicle Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2025

Functional safety research: under the "equal rights for intelligent driving", safety of the intended functionality (SOTIF) design is crucial As Chinese new energy vehicle manufacturers propose "Equal...

Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025

AI-Defined Vehicle Report: How AI Reshapes Vehicle Intelligence? Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025, released by ResearchInChina, studies, analyzes, and summarizes the c...

Automotive Digital Key (UWB, NearLink, and BLE 6.0) Industry Trend Report, 2025

Digital key research: which will dominate digital keys, growing UWB, emerging NearLink or promising Bluetooth 6.0?ResearchInChina has analyzed and predicted the digital key market, communication techn...

Integrated Battery (CTP, CTB, CTC, and CTV) and Battery Innovation Technology Report, 2025

Power battery research: 17 vehicle models use integrated batteries, and 34 battery innovation technologies are released ResearchInChina released Integrated Battery (CTP, CTB, CTC, and CTV)and Battery...

AI/AR Glasses Industry Research Report, 2025

ResearchInChina released the " AI/AR Glasses Industry Research Report, 2025", which deeply explores the field of AI smart glasses, sorts out product R&D and ecological layout of leading domestic a...

Global and China Passenger Car T-Box Market Report 2025

T-Box Research: T-Box will achieve functional upgrades given the demand from CVIS and end-to-end autonomous driving ResearchInChina released the "Global and China Passenger Car T-Box Market Report 20...

Automotive Microcontroller Unit (MCU) Industry Report, 2025

Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic produc...

Automotive LiDAR Industry Report, 2024-2025

In early 2025, BYD's "Eye of God" Intelligent Driving and Changan Automobile's Tianshu Intelligent Driving sparked a wave of mass intelligent driving, making the democratization of intelligent driving...

Software-Defined Vehicles in 2025: SOA and Middleware Industry Research Report

Research on automotive SOA and middleware: Development towards global SOA, cross-domain communication middleware, AI middleware, etc. With the implementation of centrally integrated EEAs, OEM softwar...

Global and Chinese OEMs’ Modular and Common Technology Platform Research Report, 2025

Modular platforms and common technology platforms of OEMs are at the core of current technological innovation in automotive industry, aiming to enhance R&D efficiency, reduce costs, and accelerate...

Research Report on the Application of AI in Automotive Cockpits, 2025

Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution" From the early 2000s, when voice recognition and facial monitoring functions were first ...

Analysis on Li Auto’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2024-2025

Mind GPT: The "super brain" of automotive AI        Li Xiang regards Mind GPT as the core of Li Auto’s AI strategy. As of January 2025, Mind GPT had undergone multip...

Automotive High-precision Positioning Research Report, 2025

High-precision positioning research: IMU develops towards "domain controller integration" and "software/hardware integrated service integration" According to ResearchInChina, in 2024, the penetration...

China Passenger Car Digital Chassis Research Report, 2025

Digital chassis research: Local OEMs accelerate chassis digitization and AI   1. What is the “digital chassis”? Previously, we mostly talked about concepts such as traditional chassis, ch...

Automotive Micromotor and Motion Mechanism Industry Report, 2025

Automotive Micromotor and Motion Mechanism Research: More automotive micromotors and motion mechanisms are used in a single vehicle, especially in cockpits, autonomous driving and other scenarios. Au...

Research Report on AI Foundation Models and Their Applications in Automotive Field, 2024-2025

Research on AI foundation models and automotive applications: reasoning, cost reduction, and explainability Reasoning capabilities drive up the performance of foundation models. Since the second ha...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号