Automotive Chassis-by-Wire Industry Report, 2020-2021
  • Aug.2021
  • Hard Copy
  • USD $3,500
  • Pages:165
  • Single User License
    (PDF Unprintable)       
  • USD $3,300
  • Code: LMM008
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $4,900
  • Hard Copy + Single User License
  • USD $3,700
      

Chassis-by-Wire Research: China’s Brake-by-Wire Assembly Rate Is only 2%, Indicating Huge Growth Potentials

With the mass production of L3-L4 autonomous driving, the necessity of Chassis-by-Wire has become increasingly prominent. What is the status quo of Chassis-by-Wire? What is the more advanced product form? Who will lead this market?

1. Brake-by-Wire takes the lead in mass production, and Bosch dominates the field

There are two key Chassis-by-Wire products: Brake-by-Wire and Steer-by-Wire. Brake-by-Wire has taken the lead in mass production thanks to the demand from new energy vehicles and L3 autonomous driving. China's Brake-by-Wire assembly rate was 1.6% in 2020, and it is expected to exceed 2.5% in 2021.

底盘1_副本.png

In 2020, Bosch's Brake-by-Wire products (iBooster, iBooster 2.0, IPB) seized a market share of over 90%, signaling an absolute dominant position.

底盘2_副本.png

2. In the EMB era, Brembo, Mando, Haldex, and EA Chassis get a head start

Currently, Brake-by-Wire is mainly divided into Electro-Hydraulic Brake (EHB) and Electro-Mechanical Brake (EMB).

? EHB evolves from the traditional hydraulic brake system. Compared with the traditional hydraulic brake system, EHB boasts a more compact structure and better braking efficiency. It is currently the main mass production solution of the Brake-by-Wire system. Bosch IPB/iBooster, Continental MK C1/MK C2, ZF TRW IBC, Bethel Automotive Safety Systems WCBS, etc. are all EHB solutions.

? EMB completely abandons brake fluid and hydraulic pipelines that are seen in the traditional brake system, but uses the motor to drive the brake to generate the braking force. It is a true Brake-by-Wire system and is expected to become the development trend.

At present, there are no mature EMB products on the market. Major foreign companies such as Brembo, Mando, and Haldex have displayed or released related products, and they may get a head start in future marketization.

In April 2021, Brembo released its Brake-by-Wire product at the Shanghai Auto Show. Brembo has been studying the Brake-by-Wire technology based on mechatronics since 2001.

底盘3_副本.png

Mando announced its Brake-by-Wire technology at CES 2021, which is composed of 4 units of EMB (Electro Mechanical Brake), mounted on “4-corner module (4 wheels)”, “E-Brake-Pedal (Electronic brake pedal)”, and DCU (Domain Control Unit).

In May 2020, Zhejiang Vie Science & Technology Co., Ltd. and Haldex invested RMB15 million each in establishing Suzhou Haldex Vie, which is dedicated to the production and sale of EMB products. The EMB launched by Haldex Vie targets the commercial vehicle market and can be used on city buses, coaches, trucks and tractors.

底盘4_副本.png

Among domestic automakers, EA Chassis, a subsidiary of Great Wall Motor, has researched EMB by itself and released related products during the 2021 Shanghai Auto Show.

底盘5.png

3. Steer-by-Wire represents the next-generation development route

Compared with the booming Brake-by-Wire market, Steer-by-Wire seems too quiet. At present, only four production models of Infiniti adopt mechanically redundant Steer-by-Wire (namely Direct Adaptive Steering? (DAS)) from Kayaba.

DAS retains the mechanical transmission steering mode. When Steer-by-Wire fails, the driver can take over the control. But for autonomous driving, the backup & redundant technology roadmap of the electronic control system may be a better choice.

The electronic control system backup & redundant steering (SBW) uses multiple motor controllers at the actuator (steering mechanism) to achieve redundancy. At the steering wheel, multiple sensors are arranged to enable the redundancy of the input signal. Therefore, it can completely remove the mechanical connection between the steering wheel and steering gear. On this basis, it is possible for autonomous vehicles to let the steering wheel extend or retract, which can diversify the layout of the cockpit.

4. SBW will see mass production in 2022-2023, with Bosch and Mando taking the lead in layout

Currently, SBW is still dominated by foreign companies. Bosch, Mando, JTEKT, Nexteer, Schaeffler, etc. have taken the lead in the layout, and they will conduct mass production in 2022-2023.

Bosch will launch SBW- Motor Redundant Backup System in 2023

Bosch adopts the redundant backup technology roadmap for the electronic control system. Its Steer-by-Wire system was first unveiled at the 2019 Shanghai Auto Show, but the product is expected to be applied in 2023.

底盘6_副本.png

底盘7.png

Mando will mass-produce Steer-by-Wire products in 2022

In January 2021, Mando unveiled its new vision based on safety and freedom, the “Freedom in Mobility”, at CES 2021. Under this vision, Mando demonstrated the “x-by-Wire” technology including Mando’s BbW (Brake-by-Wire) and SbW (Steer-by-Wire)

Mando built its SbW on a redundant E/E architecture and it can be continuously upgraded. It will be mass-produced at the Opelika plant in Alabama, North America, at first, in 2022.

底盘8.png

Summary:
On the whole, companies that deploy Brake-by-Wire and Steer-by-Wire simultaneously are more likely to provide users with integrated Chassis-by-Wire solutions, and will grab more lucrative opportunities before autonomous driving is implemented. At present, such companies include Bosch, CNXMotion (a joint venture between Continental and Nexteer), ZF, Mando and other foreign companies, as well as Chinese companies like NASN.

In addition, China-based Great Wall Motor has also started its layout. It conducts independent research and development of Brake-by-Wire and Steer-by-Wire through its two subsidiaries, EA Chassis and HYCET. In 2023, Great Wall Motor will commercialize smart Chassis-by-Wire which integrates a new EEA, Steer-by-Wire, Brake-by-Wire, Shift-by-Wire, Throttle-by-Wire and Suspension-by-Wire to dabble in L4 autonomous driving.

1. Automotive Chassis
1.1 Vehicle Structure and Role of Chassis
1.2 Chassis Structure and Operating Principle of ICE Vehicles
1.3 Demand of Smart Cars for Chassis Systems
1.4 New Features of Chassis-by-Wire  

2. Chassis-by-Wire Market
2.1 Chassis-by-Wire Structure
2.2 Five Systems of Chassis-by-Wire
2.3 Status Quo of Domestic Chassis-by-Wire Industry
2.4 Policies for Brake-by-Wire and Steer-by-Wire  

2.5 Steer-by-Wire Market
2.5.1 Development History of Steer-by-Wire
2.5.2 Classification of Steer-by-Wire
2.5.3 Steer-by-Wire Installation
2.5.4 Steer-by-Wire R&D and Supply of Major Suppliers

2.6 Brake-by-Wire Market
2.6.1 Development History of Brake-by-Wire
2.6.2 Classification of Brake-by-Wire
2.6.3 Electronic Hydraulic Brake (EHB)
2.6.4 Comparison between Brake-by-Wire Products
2.6.5 Applied Scenarios of Brake-by-Wire
2.6.6 Brake-by-Wire Configurations and Competitive Landscape in China
2.6.7 Main Models with Brake-by-Wire and Suppliers in China
2.6.8 Brake-by-Wire R&D and Supply of Major Suppliers

3. Leading Chassis-by-Wire Suppliers

3.1 Bosch
3.1.1 Profile
3.1.2 Brake-by-Wire Development History
3.1.3 Composition of iBooster2.0
3.1.4 Features of iBooster2.0
3.1.5 Application of iBooster
3.1.6 Bosch IPB
3.1.7 IPB Application in New Energy Vehicles
3.1.8 Steer-by-Wire
3.1.9 Bosch Huayu

3.2 Continental
3.2.1 Profile
3.2.2 MK C1
3.2.3 MKC1 EVO
3.2.4 MK C1 Derivatives
3.2.5 MK C2
3.2.6 Estimated One Box Assembly Rate in the Future
3.2.7 Expansion in New Fields of Electronic Braking

3.3 Schaeffler
3.3.1 Profile
3.3.2 Development Course of Space Drive
3.3.3 Space Drive
3.3.4 Parameters of Space Drive  
3.3.5 Space Drive HEAD MODULE
3.3.6 Highlights of Schaeffler Paravan Drive-by-Wire System
3.3.7 Service Scope of Space Drive 
3.3.8 Use Cases of Space Drive
3.3.9 Steer-by-Wire
3.3.10 Application of Steer-by-Wire 
3.3.11 Brake-by-Wire

3.4 Nexteer 
3.4.1 Profile 
3.4.2 Orders in 2020
3.4.3 Development History of Steer-by-Wire Technology
3.4.4 Steer-by-Wire Technology
3.4.5 Quiet Wheel? Steering & Steering on Demand? System
3.4.6 AES
3.4.7 Cooperation with Continental
3.4.8 CNXMotion

3.5 ZF 
3.5.1 Profile 
3.5.2 Operation in 2020
3.5.3 See-Think-Act Strategy
3.5.4 Electronic Brake Booster (EBB) 
3.5.5 Integrated Brake Control (IBC) 
3.5.6 Rear Axle Steering System AKC
3.5.7 Rear Axle Steering System AKC 2.0 
3.5.8 sMOTION Active Chassis System

3.6 Brembo
3.6.1 Profile 
3.6.2 Brake-by-Wire  

3.7 Bethel Automotive Safety Systems 
3.7.1 Profile 
3.7.2 WCBS
3.7.3 WCBS 2.0

3.8 Mando 
3.8.1 Profile 
3.8.2 Product Line
3.8.3 “Freedom in Mobility” Vision
3.8.4 Steer-by-Wire 
3.8.5 AHB III  (iBAU+PSU) & IDB
3.8.6 Autonomous Driving Product Line

3.9 JTEKT
3.9.1 Profile 
3.9.2 SBW
3.9.3 Concept Model based on Steering-by-wire
3.9.4 Cooperation in Steering Software

3.10 NSK
3.10.1 Profile 
3.10.2 Steer-by-Wire (FFA·RWA) 
 
3.11 Kayaba
3.11.1 Profile
3.11.2 Steer-by-Wire System Applied to Infiniti Q50

3.12 Shanghai NASN Automotive Electronics
3.12.1 Profile 
3.12.2 Nbooster+EPS Plus
3.12.3 Cooperation
3.12.4 Winter Test

3.13 Ningbo Tuopu Group
3.13.1 Profile 
3.13.2 Layout in China  
3.13.3 Global Layout
3.13.4 IBS

3.14 GLOBAL Technology
3.14.1 Profile 
3.14.2 IBC
3.14.3 GIBC
3.14.4 Autonomous Shuttles

3.15 Zhejiang Vie Science & Technology Co., Ltd.
3.15.1 Profile 
3.15.2 EMB

3.16 Tianjin TRiNova Automotive Technology Co., Ltd.
3.16.1 Profile 
3.16.2 Application of T-booster

3.17 Shanghai Tongyu Automotive Technology Co., Ltd.
3.17.1 Profile 
3.17.2 EHB

3.18 Skywilling
3.18.1 Profile
3.18.2 Small Ant Medium Chassis-by-Wire

3.19 Nanjing JWD Automotive Technology Co., Ltd.
3.19.1 Profile
3.19.2 New Electro-Hydraulic Brake System (iCAS-Brake) 

3.20 China Automotive Innovation Corporation (CAIC)
3.20.1 Profile
3.20.2 Positioning at Tier 0.5
3.20.3 Drive-by-wire Solution
3.20.4 Redundant Smart Steering
3.20.5 Chassis Domain Control System Architecture Solution
3.20.6 Chassis Domain Control System Development Plan

4. Chassis-by-Wire Application of Automakers

4.1 SAIC
4.1.1 DIAS 
4.1.2 SAIC DIAS Intelligent Connected Innovation Center
4.1.3 DIAS 4i Technologies
4.1.4 Cooperation between DIAS and Continental
4.1.5 Vehicle-by-wire Solution
4.1.6 IM Motors

4.2 Dongfeng Motor Corporation
4.2.1 Drive-by-wire Technology Reserves
4.2.2 Dongfeng Sharing Box
4.2.3 Drive-by-wire Solution of Dongfeng Trucks

4.3 BYD
4.3.1 BYD D++ Platform
4.3.2 BYD Han

4.4 Great Wall Motor 
4.4.1 EA Chassis 
4.4.2 Production layout of EA Chassis  
4.4.3 EA Chassis Releases EMB Brake System
4.4.4 HYCET 
4.4.5 HYCET Smart Steering Products

4.5 Chery
4.5.1 Chery New Energy Intelligent Connectivity Industry Structure
4.5.2 Chery New Energy Intelligent Connectivity Electronic Structure
4.5.3 Chassis-by-Wire 

4.6 Other OEMs
4.6.1 FAW Hongqi
4.6.2 BAIC BJEV
4.6.3 GAC
4.6.4 Changan
 

Analysis on Xpeng’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2023

Research on Xpeng’s layout in electrification, connectivity, intelligence and sharing: in the innovation-driven rapid development, secured orders for 100 flying cars.     NIO, Xp...

Automotive Cockpit SoC Research Report, 2024

Automotive Cockpit SoC Research: Automakers quicken their pace of buying SoCs, and the penetration of domestic cockpit SoCs will soar Mass production of local cockpit SoCs is accelerating, and the l...

Automotive Integrated Die Casting Industry Report, 2024

Integrated Die Casting Research: adopted by nearly 20 OEMs, integrated die casting gains popularity.  Automotive Integrated Die Casting Industry Report, 2024 released by ResearchInChina summari...

China Passenger Car Cockpit Multi/Dual Display Research Report, 2023-2024

In intelligent cockpit era, cockpit displays head in the direction of more screens, larger size, better looking, more convenient interaction and better experience. Simultaneously, the conventional “on...

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla’s big pr...

Qualcomm 8295 Based Cockpit Domain Controller Dismantling Analysis Report

ResearchInChina dismantled 8295-based cockpit domain controller of an electric sedan launched in December 2023, and produced the report SA8295P Series Based Cockpit Domain Controller Analysis and Dism...

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号