China Autonomous Retail Vehicle Industry Report, 2022
  • June 2022
  • Hard Copy
  • USD $3,600
  • Pages:160
  • Single User License
    (PDF Unprintable)       
  • USD $3,400
  • Code: FZQ001
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $5,000
  • Hard Copy + Single User License
  • USD $3,800

Research on Autonomous Retail Vehicles: Lower Costs Accelerate Mass Production with Ever-spreading Retail Scenarios

Autonomous retail vehicles integrate technologies such as 5G, artificial intelligence, big data, mobile Internet and autonomous driving. They can move with the changes in the surrounding traffic autonomously. Users can hail such vehicles directly through APPs, and then they will arrive at the designated location accurately to provide convenient services.

无人零售车 1.png

At present, the digital economy has become the key engine of China's economic development. According to information from the Ministry of Industry and Information Technology, China has built 1.615 million 5G base stations so far, serving more than 400 million 5G users. China is a global leader in 5G infrastructure, mobile Internet ecology, and e-commerce. Smartphones have become the preferred terminals of the digital economy, smart cars will become the second-ranking terminals, and autonomous retail vehicles act as not only important terminals connecting e-commerce services and smartphones, but also core intelligent terminals that realize the transition from "people looking for services" to "services looking for people" (or "goods looking for people").

无人零售车 2_副本.png

Autonomous retail vehicles are widely used in smart scenic spots, AI parks, commercial streets, zones, squares and other places for selling high-demand products such as beverages, breakfast, fast food, fresh products, and even shoes. Mobile new retail lets goods look for people. Users can stop autonomous vending vehicles by scanning QR codes, beckoning, and touching displays, and pay for what they choose by QR code scanning. This mode is time-saving, convenient and easy. For merchants, presenting products in front of customers in crowded areas (subway entrances, business districts, zones, etc.) during rush hours and lunch break when the demand hits the maximum can significantly increase the transaction volume. The service radius of merchants has been expanded from 1-2 kilometers to 5 kilometers.

无人零售车 3_副本.png

1. The policies for low-speed autonomous vehicles have been gradually improved

As low-speed autonomous vehicles, autonomous retail vehicles are used in cargo-carrying scenarios that are easier to handle. On May 25, 2021, Beijing High-level Autonomous Driving Demonstration Zone released the "Implementation Rules for the Management of Autonomous Delivery Vehicles", and issued vehicle numbers for autonomous delivery vehicles of, Meituan and Neolix. Since then, L4 autonomous driving technology has been verified by large-scale testing and on-road operation, which has promoted the vigorous development of China’s autonomous delivery industry.

Neolix launched nearly 1,000 autonomous vehicles in 2021, and plans to roll out another 2,000 autonomous delivery vehicles in 2022. Meituan plans to deploy 1,000 autonomous delivery vehicles in Shunyi District within three years, and put a total of 10,000 such vehicles into operation nationwide to achieve multi-city, multi-scenario and all-weather coverage.

Up to now, Beijing High-level Autonomous Driving Demonstration Zone has granted a total of 225 test licenses, including 86 body codes for autonomous delivery vehicles. So far, the demonstration zone has started the third phase of the construction project. In the demonstration zone, 332 digital intelligent intersections have been fully covered by the infrastructure within a range of 60 square kilometers. Scenarios such as autonomous retail, autonomous police patrols, and micro-circulation shuttling have approached citizens.

无人零售车 4.png

无人零售车 5-1_副本.png无人零售车 5-2_副本.png

At the beginning of March 2022, Shanghai Municipal Transportation Commission announced that a total of 13 solutions for Shanghai Intelligent Connected Vehicle Demonstration Application Innovation Project had been confirmed after companies' voluntary application, on-site evaluation and solution review according to the "Implementation Plan for the Expansion of Demonstration Application Scenarios of Intelligent Connected Vehicles in Shanghai (2021-2023)". Among them, 2 solutions were involved with "smart retail", requiring "no less than 20 smart retail vehicles” in operation.

无人零售车 6_副本.png

2. The costs of low-speed autonomous delivery vehicles are gradually sinking, promoting mass production of such vehicles for more scenarios

Depending on models, sensor solutions, etc., an autonomous delivery vehicle generally costs RMB200,000 ~ 500,000, let alone other expenses incurred by insurance, vehicle operation and maintenance, on-site safe operation and maintenance, remote monitoring, labor, cloud platform services, etc. China-based Haomo.AI has launched its first autonomous delivery vehicle, the Little Magic Camel, priced at RMB130,000. It is equipped with 3 mechanical LiDAR sensors worth about RMB40,000, radar, cameras and a computing platform. The total cost is nearly RMB100,000. Among the three basic systems of perception, decision-making and actuation, the computing platform plays a key role in the safe operation of autonomous retail vehicles.

With the gradual penetration of autonomous retail vehicles from fixed scenarios to more complex public road scenarios, extremely high requirements are placed on low-latency processing and multi-sensor information fusion of computing platforms. In the field of computing platforms, typical automotive chip enterprises include Horizon Robotics, Huawei, Idriverplus, Haomo.AI, Neolix, WeDrive.Al, Go Further AI, etc. The current mainstream computing platform is the NVIDIA Jetson AGX Xavier platform which is estimated at around RMB10,000 according to the supplier's price that is expected to further drop in the future.

无人零售车 7_副本.png

In addition, LiDAR whose cost is on a downward trend plays an extremely critical role in the perception system. Most of the current autonomous delivery vehicles use 16-channel LiDAR. Under the stimulation of demand, Chinese LiDAR vendors, such as LeiShen Intelligent System, RoboSense, HESAI, Livox, Huawei, etc., have sprung up, and they can basically meet the demand of autonomous delivery vehicles.

Chassis-by-wire is one of three core components of an autonomous delivery vehicle. In China, main chassis-by-wire players include PIX, Teemo, UISEE, Skywilling, Neolix, and Haomo.AI. For example, PIX Moving offers chassis-by-wire at the price of RMB80,000 ~ 100,000. With the continuous deployment of autonomous delivery vehicles and autonomous retail vehicles in China, large-scale mass production will further drag down the price of chassis-by-wire.

?The chassis of autonomous vehicles is changeable, and a specific service function can be fixed horizontally like autonomous retail vehicles, autonomous media vehicles, etc.

无人零售车 8.png

?UISEE’s autonomous vehicles: Different services can be performed at different times of the day with a higher operational efficiency.
UISEE, which is committed to all-scenario strategy, continues to expand application scenarios of its products. On September 25, 2021, it officially released UiBox (an L4 autonomous driving solution for urban services) and UiBox (an autonomous delivery vehicle) to further promote "commercial application of AI drivers" in all scenarios. UiBox can offer different services at different times to improve operational efficiency.

无人零售车 9_副本.png

3. The application scenarios of autonomous retail vehicles have spread from semi-enclosed zones to open roads and then to large communities
In 2021, Jushi Technology deployed an autonomous fleet in Zhangjiang Artificial Intelligence Island in Shanghai where employees can buy a variety of food, office supplies, and daily necessities from autonomous retail vehicles. Autonomous delivery vehicles can provide food delivery services such as pizza delivery to restaurants on the artificial intelligence island. After employees place orders through their mobile phones, autonomous vehicles will automatically deliver the meals prepared by restaurants to employees who only need pick up the meals according to the notification on their mobile phones. In addition, the supporting monitoring platform can surveil the operation of autonomous vehicles around the clock to ensure safety.

无人零售车 10.png

On June 1, 2022, Shanghai WeDrive.Al officially introduced autonomous retail vehicles to Nanfeng Future Community, Shangyu, Shaoxing, Zhejiang to provide autonomous sales services for the community. Nanfeng Future Community consists of City Star, Liangjiang Home and Community Center Complex, which are home to more than 40,000 residents and more than 12,700 families.

无人零售车 11.png

On April 22, 2022, Neolix’s autonomous vehicles were also welcomed into the large community of Shanghai Lijing in Pudong District, Shanghai. Autonomous retail companies are covering more application scenarios.

4. OEMs use their advantages in technology and manufacturing to explore new businesses

On April 30, 2021, In-driving Tech was invited to participate in the Science Night of Han Street in Wuhan. The interactive area displayed the Sharing-Box, a high-tech autonomous smart car developed by In-driving Tech and Dongfeng Motor.
Sharing Box is an autonomous intelligent point-to-point transportation platform launched by Dongfeng Motor. It is constructed by integrating TITAN (an autonomous driving domain controller of In-driving Tech) and Athena Software to realize L4 autonomous driving based on HD maps in specific scenarios.

无人零售车 12.png

In addition to Dongfeng Motor, Wuling has also explored new businesses with its own technology and manufacturing advantages, and launched "Xiaoling" driverless smart retail vehicle, which has been practically applied.
In Baoding, Haomo.AI, a company backed up by Great Wall Motor, has built the world's first flexible manufacturing base for L4 low-speed autonomous vehicles. It produces a variety of models (including autonomous retail vehicles). After the latest upgrade, the design capacity of the production line can reach 10,000 vehicles per year.

 5. With the support of capital, major players aggressively enhance resilience, use closed data loop to continuously improve technology and ensure safe operation

无人零售车 13_副本.png无人零售车 14_副本.png

During the R&D process of Little Donkey, which can run more than 100 kilometers on a charge of 4 kWh, Alibaba DAMO Academy has built its own autonomous driving cloud platform from the very beginning, which uploads massive data (scenario databases, autonomous vehicle data, data from data collection vehicles) to Alibaba Cloud. Carrying out data management, simulation testing and algorithm model training on the cloud has greatly improved the R&D efficiency of autonomous driving algorithms. Based on this autonomous driving cloud platform, Alibaba DAMO Academy has launched the world's first "hybrid simulation test platform" for autonomous driving. The platform uses a combination of virtual and reality simulation technologies, introduces real road test scenarios and cloud trainers. It takes only 30 seconds to simulate an extreme scenario, and the system’s daily virtual test mileage can exceed 8 million kilometers, greatly improving the training efficiency of autonomous driving AI models. 

无人零售车 15.png

From its debut in September 2020 to March 31, 2022, Little Donkey delivered more than 10 million logistics orders.

According to Jie Jinghua, a partner of Neolix, the current commercial scenarios of Neolix’s autonomous vehicles include both open roads and closed zones such as campuses. A vehicle can obtain 100T data per day, and it actively captures about 20G/day of valuable data (including the original point cloud of LiDAR, images, intermediate results, logs and so on). The Ocean data system completes the storage, cleaning, labeling and model training of these data before finally forming a closed data loop.
When autonomous vehicles become more sophisticated, the ultimate challenge no longer lies in underlying architectures or technical problems, but fragmented scenarios, special extreme situations and human behaviors that can never be predicted instead which account for 5%.

1 Overview of Autonomous Retail Vehicles
1.1 Mobile Retail Is a Form of Autonomous Delivery
1.1.1 Hardware Indicators of 12 Typical Autonomous Delivery Vehicles
1.1.2 Cost Downtrend of Autonomous Delivery Vehicles
1.2 Introduction to Autonomous Retail Vehicles
1.3 Business Models of Autonomous Retail Vehicles
1.4 Three Core Components of Autonomous Retail Vehicles: LiDAR
1.4 Three Core Components of Autonomous Retail Vehicles: Computing Platform
1.4 Three Core Components of Autonomous Retail Vehicles: Chassis-by-Wire
1.5 Growth Background of Autonomous Retail Vehicles (1): Vigorous Growth of Social Logistics
1.5 Growth Background of Unmanned Retail Vehicles (2): Blowout of Express Delivery Business
1.5 Growth Background of Unmanned Retail Vehicles (3): Enormous Number of Mobile Payment Netizens
1.5 Growth Background of Unmanned Retail Vehicles (IV): Gradual Maturity of Autonomous Delivery Industry Chain

2 Autonomous Delivery Policies
2.1 Some Chinese Policies for Autonomous Delivery
2.2 Overseas Policies for Autonomous Delivery
2.3 Low-speed Autonomous Vehicle Safety Management and Accident Insurance

3 Autonomous Retail Vehicle Companies in China

3.1 WeDrive.Al
3.1.1 Profile
3.1.2 Overview of Pangolin Robot (Parent Company)
3.1.3 Wedrive S3 (Autonomous Vending Vehicle)
3.1.4 Pandora (Self-developed Autonomous Driving Computing Platform)
3.1.5 Application Cases of Autonomous Retail Vehicles

3.2 Go Further AI
3.2.1 Profile
3.2.2 "Juedi" Series Autonomous Retail Vehicles
3.2.3 Core Autonomous Driving Technology
3.2.3 Core Autonomous Driving Suite
3.2.4 Application Cases of Autonomous Retail Vehicles (Parks)
3.2.4 Application Cases of Autonomous Retail Vehicles (Campuses)
3.2.4 Application Cases of Autonomous Retail Vehicles (High Speed Rail Station, etc.)
3.2.4 Application Cases of Autonomous Retail Vehicles (Exhibition Services)
3.2.5 Production  
3.2.6 Partners and Operation 

3.3 Yours
3.3.1 Profile
3.3.2 Autonomous Retail Vehicles
3.3.3 Competitive Advantages of Autonomous Retail Vehicles
3.3.4 Startup and Financing of Autonomous Vehicle Project
3.3.5 Application Cases of Autonomous Retail Vehicles (1)
3.3.5 Application Cases of Autonomous Retail Vehicles (2)
3.3.6 Cooperative Malls/Shops

3.4 Neolix
3.4.1 Profile
3.4.2 Autonomous Retail Vehicles
3.4.3 NeoWise (Self-developed Autonomous Driving Computing Platform)
3.4.4 Production of L4 Autonomous Vehicles
3.4.5 Application Cases of Autonomous Retail Vehicles (Parks)
3.4.5 Application Cases of Autonomous Retail Vehicles (Zones)
3.4.5 Application Cases of Autonomous Retail Vehicles (Exhibition Services)
3.4.5 Application Cases of Autonomous Retail Vehicles (Communities + Open Roads)
3.4.6 Partners

3.5 Unity Drive
3.5.1 Profile
3.5.2 Autonomous Retail Vehicles
3.5.3 Technical Advantages
3.5.4 Hardware Configuration of Autonomous Retail Vehicles
3.5.5 Application Cases of Autonomous Retail Vehicles
3.5.6 Overall Application
3.5.7 Autonomous Vehicle Partners

3.6 Go Further AI
3.6.1 Profile
3.6.2 Autonomous Retail Vehicles
3.6.3 Configuration and Features of Autonomous Retail Vehicles (1)
3.6.3 Configuration and Features of Autonomous Retail Vehicles (2)
3.6.4 Application Cases of Autonomous Retail Vehicles

3.7.1 Profile
3.7.2 Development History
3.7.3 UiBox (L4 Autonomous Driving Solution)
3.7.4 Autonomous Retail Vehicles
3.7.5 Core Technology
3.7.6 Application Cases of Autonomous Delivery Vehicles (Guangzhou)
3.7.6 Application Cases of Autonomous Delivery Vehicles (Shanghai)
3.7.6 Application Cases of Autonomous Delivery Vehicles (Saudi Arabia)
3.7.6 Establishment of "Autonomous Driving & Smart City Service Innovation Lab”

3.8.1 Profile
3.8.2 Core Team Members
3.8.3 CYBER-EXP-01 Autonomous Vehicle
3.8.4 Hardware Configuration of CYBER-EXP-01
3.8.6 Partners

3.9 Hangzhou Skywilling 
3.9.1 Profile
3.9.2 "Little Ant" Chassis-by-Wire (NWD01)
3.9.2 "Little Fish" Chassis-by-Wire (JD01)
3.9.3 Derivatives of "Little Ant" Chassis-by-Wire
3.9.3 Autonomous Vending Vehicles Based on "Little Ant" Chassis-by-Wire  
3.9.4 Chassis Technology of Autonomous Vending Vehicles
3.9.5 Application Cases of Autonomous Retail Vehicles
3.9.5 Exhibited Intelligent Vehicles
3.9.6 Shipments of Autonomous Vehicles
3.9.7 Partners

3.10 Hunan Apollo Intelligent Transportation
3.10.1 Profile
3.10.2 Autonomous Driving R&D Center
3.10.3 Overview of BOBO?GO Autonomous Retail Vehicle
3.10.4 Debut of BOBO?GO
3.10.4 Application Cases of Autonomous Retail Vehicles (Expressway Service Areas)
3.10.4 BOBO?GO (Exhibition)
3.10.4 Application Cases of BOBO?GO (Zones)
3.10.4 Application Cases of BOBO?GO (Scenic Spots)

3.11 In-driving Tech
3.11.1 Profile
3.11.2 TITAN (L4 Autonomous Driving Domain Controller)
3.11.3 Athena Autonomous Driving Platform Software
3.11.4 Application Cases of “Sharing Box” Autonomous Vending Vehicles (Campuses)
3.11.4 Application Cases of “Sharing Box” Autonomous Vending Vehicles (Business Districts)

3.12 Jushi Technology
3.12.1 Profile
3.12.2 Development History
3.12.3 Core Technology
3.12.4 QBOX Autonomous Retail Vehicle
3.12.5 Application Cases of Autonomous Retail Vehicles (1)
3.12.5 Application Cases of Autonomous Retail Vehicles (2)
3.12.5 Application Cases of Autonomous Retail Vehicles (3)
3.12.6 Partners

3.13 Elife
3.13.1 Profile
3.13.2 Autonomous Technology: Autonomous Retail Vehicles

3.14 Wuling
3.14.1 Autonomous Retail Vehicles 
3.14.2 Application Cases of Autonomous Retail Vehicles

3.15 White Rhino 
3.15.1 Profile
3.15.2 Configuration of Autonomous Vehicles
3.15.3 Core Technology
3.15.4 Typical Application Cases of Autonomous Vehicles (1)
3.15.5 Typical Application Cases of Autonomous Vehicles (2)
3.15.6 Typical Application Cases of Autonomous Vehicles (3)
3.15.7 Typical Application Cases of Autonomous Vehicles (4)
3.15.8 Support for Autonomous Vehicles

4 Major Providers of Basic Chassis for Autonomous Retail Vehicles in China

4.1 Ecar Tech
4.1.1 Profile
4.1.2 IDV 
4.1.3 Automotive Chassis Configuration
4.1.4 Chassis-by-Wire Empowers Autonomous Retail Vehicles

4.2 Teemo
4.2.1 Profile
4.2.2 Chassis
4.2.3 Chassis Extension: Autonomous Retail Vehicles

4.3 PIX Moving
4.3.1 Profile
4.3.2 Skateboard Chassis
4.3.3 Chassis Matrix
4.3.3 Chassis Parameters
4.3.4 Perception Configuration of Mobile Space Hardware
4.3.5 Mobile Space Extends to Mobile New Retail
4.3.6 Autonomous Smart Beverage Retail Vehicles
4.3.7 Partners

4.4 Haomo.AI
4.4.1 Profile
4.4.2 Development History
4.4.3 Main Business
4.4.4 Core Competence
4.4.5 Low-speed Autonomous Logistics Vehicles
4.4.6 Chassis-by-Wire of Low-speed Autonomous Vehicles
4.4.7 Autonomous Retail Vehicles
4.4.8 L4 Low-speed Autonomous Vehicle Manufacturing Bases

4.5 MOVE-X
4.5.1 Profile
4.5.2 Development History
4.5.3 Autonomous Vehicles
4.5.4 Parameters of RC ONE Autonomous Vehicle
4.5.5 L4 Autonomous Vehicle Manufacturing and Testing Bases

Analysis on Xpeng’s Layout in Electrification, Connectivity, Intelligence and Sharing, 2023

Research on Xpeng’s layout in electrification, connectivity, intelligence and sharing: in the innovation-driven rapid development, secured orders for 100 flying cars.     NIO, Xp...

Automotive Cockpit SoC Research Report, 2024

Automotive Cockpit SoC Research: Automakers quicken their pace of buying SoCs, and the penetration of domestic cockpit SoCs will soar Mass production of local cockpit SoCs is accelerating, and the l...

Automotive Integrated Die Casting Industry Report, 2024

Integrated Die Casting Research: adopted by nearly 20 OEMs, integrated die casting gains popularity.  Automotive Integrated Die Casting Industry Report, 2024 released by ResearchInChina summari...

China Passenger Car Cockpit Multi/Dual Display Research Report, 2023-2024

In intelligent cockpit era, cockpit displays head in the direction of more screens, larger size, better looking, more convenient interaction and better experience. Simultaneously, the conventional “on...

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla’s big pr...

Qualcomm 8295 Based Cockpit Domain Controller Dismantling Analysis Report

ResearchInChina dismantled 8295-based cockpit domain controller of an electric sedan launched in December 2023, and produced the report SA8295P Series Based Cockpit Domain Controller Analysis and Dism...

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

2005- All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号