China Autonomous Driving Algorithm Research Report, 2023
  • Jan.2023
  • Hard Copy
  • USD $4,200
  • Pages:220
  • Single User License
    (PDF Unprintable)       
  • USD $4,000
  • Code: WWJ003
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $6,000
  • Hard Copy + Single User License
  • USD $4,400

Autonomous Driving Algorithm Research: BEV Drives Algorithm Revolution, AI Large Model Promotes Algorithm Iteration

The core of the autonomous driving algorithm technical framework is divided into three parts: environment perception, decision planning, and control execution.

Environment perception: convert sensor data into machine language of the scenario where the vehicle is located, which can include object detection, recognition and tracking, environment modeling, motion estimation, etc.;

Decision planning: Based on the output results of perception algorithm, the final behavioral action instructions are given, including behavioral decisions (vehicle following, stopping and overtaking), action decisions (car steering, speed, etc.), path planning, etc.;

Control actuation: according to the output results of decision-making level, the underlying modules are mobilized to issue instructions to the core control components such as accelerator and brake, and promote vehicle to drive according to the planned route.

BEV drives algorithm revolution
In recent years, BEV perception has received extensive attention. BEV model mainly provides a unified space to facilitate the fusion of various tasks and sensors. It has following advantages:

BEV unifies the multimodal data processing dimension and makes multimodal fusion easier
The BEV perception system converts the information obtained from multiple cameras or radars to a bird's-eye view, and then do tasks such as object detection and instance segmentation, which can more intuitively display the dimension and direction of objects in BEV space.

In 2022, Peking University & Ali proposed a fusion framework of LiDAR and vision - BEVFusion. The processing of radar point clouds and image processing are carried out independently, using neural networks to encode, project to a unified BEV space, and then merge the two in BEV space.

自驾算法 1.png

Realize timing information fusion and build 4D space
In the 4D space, the perception algorithm can better complete the perception tasks such as speed measurement, and can transmit the results of motion prediction to the decision and control module.

PhiGent Robotics proposed BEVDet4D in 2022, which is a version based on BEVDet to increase timing fusion. BEVDet4D extends BEVDet by retaining intermediate BEV features of past frames, and then fuses features by aligning and splicing with the current frame, so that time clues can be obtained by querying two candidate features.

自驾算法 2.png

Imagine occluded objects to realize object prediction

In the BEV space, the algorithm can predict the occluded area based on prior knowledge, and imagine whether there are objects in the occluded area.

FIERY, proposed by Wayve in cooperation with the University of Cambridge in 2021, is an end-to-end road dynamic object instance prediction algorithm that does not rely on high-precision maps and is only based on aerial views of monocular cameras.

自驾算法 3.png

Promoting development of an end-to-end autonomous driving framework

In the BEV space, perception and prediction can be directly optimized end-to-end through neural networks in a unified space, and the results can be obtained at the same time. Not only the perception module, but also the BEV-based planning decision-making module is also the direction of academic research.
In 2022, autonomous driving team of Shanghai Artificial Intelligence Laboratory and the team of associate professor Yan Junchi of Shanghai Jiao Tong University collaborated on paper ST-P3 to propose a spatiotemporal feature learning solution that can simultaneously provide a set of more representative features for perception, prediction and planning tasks.

自驾算法 4.png

AI large model drives algorithm iteration

After 2012, deep learning algorithms are widely applied in autonomous driving field. In order to support larger and more complex AI computing needs, AI large models with the characteristics of "huge data, huge computing power, and huge algorithms" were born, which accelerated the iteration speed of algorithms.

Large Model and Intelligent Computing Center

In 2021, HAOMO.AI launched research and landing attempts on large-scale Transformer model, and then gradually applied it on a large scale in projects including multi-modal perception data fusion and cognitive model training. In December 2021, HAOMO.AI released autonomous driving data intelligence system MANA (Chinese name "Snow Lake"), which integrates perception, cognition, labeling, simulation, computing and other aspects. In January 2023, HAOMO.AI together with Volcano Engine unveiled MANA OASIS, a supercomputing center with a total computing power of 670 PFLOPS. After deploying HAOMO.AI's training platform, OASIS can run various applications including cloud large-scale model training, vehicle-side model training, annotation, and simulation. With the help of MANA OASIS, the five major models of HAOMO.AI have ushered in a new appearance and upgrade.

自驾算法 5.png

In August 2022, based on Alibaba Cloud intelligent computing platform, Xpeng Motors built an autonomous driving intelligent computing center "Fuyao", which is dedicated to training of autonomous driving models. In October 2022, Xpeng also announced the introduction of Transformer large model.

自驾算法 6_副本.png

In November 2022, Baidu released Wenxin Big Model. Leveraging more than 1 billion parameters, it recognizes thousands of objects, helping to enlarge the scope of semantic recognition. At present, it is mainly used in three aspects: distance vision, multimodality and data mining.

自驾算法 7_副本.png

1. Overview of Autonomous Driving Algorithms
1.1 Overview of Autonomous Driving Algorithms 
1.1.1 Overview of Environment Perception Algorithms - Vision
1.1.2 Overview of Environment Perception Algorithms - LiDAR
1.1.3 Overview of Environment Perception Algorithms - Radar
1.1.4 Overview of Environment Perception Algorithms - Multi-Sensor Fusion
1.2 Overview of Decision Planning and Control Actuation Algorithms 
1.3 Development of Neural Networks 
1.4 Autonomous Driving Algorithm Supply Mode

2. Research on Chip Vendor Algorithm
2.1 Huawei
2.1.1 Smart Vehicle Solutions Department 
2.1.2 ADS Autonomous Driving Full-Stack Solution 
2.1.3 Core Algorithms 
2.1.4 Autonomous Driving Algorithm Development Plan and Ecological Partners
2.2 Horizon Robotics
2.2.1 Profile 
2.2.2 Cooperation Model 
2.2.3 On-board Computing Platform and Monocular Front-View Solution Algorithm 
2.2.4 Autonomous Driving Perception Algorithm Design 
2.2.5 Core Algorithm Model 
2.2.6 Pilot Assisted Driving Solution and Super Driving Solution Algorithm 
2.2.7 Software Open API 
2.2.8 Mass Production Results and Algorithm Planning 
2.2.9 Cooperation
2.3 Black Sesame
2.3.1 Profile 
2.3.2 Perception Algorithm 
2.3.3 Latest Algorithm Achievements
2.3.4 Shanhai Tool Chain 
2.3.5 Partners 
2.3.6 Cooperation
2.4 Genesys Microelectronics
2.5 Mobileye
2.5.1 Profile 
2.5.2 Object Recognition Technology 
2.5.3 Chip Algorithm Development Process 
2.5.4 Vision Algorithms 
2.5.5 Current Development and Cooperation
2.6 Qualcomm Arriver
2.6.1 Intro of Arriver 
2.6.2 Arriver Visual Perception Algorithm
2.7 NXP
2.8.1 Profile 
2.8.2 Cooperation Model 
2.8.3 Autonomous Vehicle Software Stack 
2.8.4 Perception Algorithm 
2.8.5 Perception Algorithm Model 
2.8.6 Latest Cooperation and Partners

3. Research on Tier 1 & Tier 2 Algorithm
3.1 Momenta
3.1.1 Profile 
3.1.2 Core Technology and Products 
3.1.3 Application of Momenta Algorithm 
3.1.4 Cooperation
3.2 Nullmax
3.2.1 Profile 
3.2.2 Visual Perception Module and Product Landing Process 
3.2.3 Introduction to the Latest Visual Perception Algorithm
3.2.4 The Landing Process of Algorithm Products 
3.2.5 Cooperation and Development Plan
3.3 ArcSoft
3.3.1 Profile 
3.3.2 ADAS Technology 
3.3.3 BSD and AVM Technologies 
3.3.4 One-Stop Vehicle Vision Solution 
3.3.5 Recent Dynamics and Major Customers 
3.4 JueFX
3.4.1 Profile 
3.4.2 Visual Feature Fusion Positioning Solution 
3.4.3 Development History of BEV Perception Technology 
3.4.4 LiDAR Fusion Location Solution 
3.4.5 LiDAR-based Fusion Solution 
3.4.6 Cooperation
3.5 ThunderSoft
3.6 Holomatic
3.6.1 Profile 
3.6.2 HoloPilot and Its Main Algorithms 
3.6.3 HoloParking and Its Main Algorithms 
3.6.4 Middleware 
3.7 Enjoy Move
3.7.1 Profile 
3.7.2 Autonomous Driving Software 
3.7.3 Cooperation 
3.8.1 Profile 
3.8.2 Product Portfolio
3.8.3 Latest Dynamics
3.8.4 MANA system 
3.8.5 MANA System - Vision, LiDAR Perception Module 
3.8.5 MANA System - Fusion Sensing Module 
3.8.5 MANA System - Cognitive Module 
3.8.6 Evolution of Perception 
3.8.7 Evolution of Cognitive Abilities 
3.8.8 New Technology Practice 
3.8.9 Recent Algorithm Achievements
3.9 Huanyu Zhixing
3.9.1 Profile
3.9.2 Autonomous Driving Software 
3.9.3 Athena 5.0 
3.9.4 Development Achievements and Planning
3.10 Valeo
3.10.1 Profile
3.10.2 Typical Algorithm Models
3.11 StradVision
3.11.1 Profile 
3.11.2 Vision Product Category & Customers & Timeline 
3.11.3 Autonomous Driving Algorithm 
3.11.4 Development Trends of Vision Products

4. Algorithm Research of Emerging Automakers and OEMs  
4.1 Tesla 
4.1.1 Profile
4.1.2 Tesla Algorithm 
4.1.3 Multi-camera Fusion Algorithm 
4.1.4 Environment Awareness Algorithm 
4.1.5 Latest Planning and Decision-making Algorithm 
4.2 NIO 
4.2.1 Profile
4.2.2 Evolution of NIO Autonomous Driving System 
4.2.3 Comparison of NIO Pilot System and NAD System 
4.3 Li Auto
4.3.1 Profile
4.3.2 Intelligent Driving Route 
4.3.3 Algorithm History 
4.3.4 AD Max Intelligent Driving Algorithm Architecture 
4.3.5 Layout in Intelligent Driving 
4.3.6 Future Development Plan
4.4 Xpeng 
4.4.1 Profile
4.4.2 Algorithm and Autonomous Driving Ability Evolution Route 
4.4.3 Autonomous Driving Algorithm Architecture 
4.4.4 New Perception Architecture 
4.4.5 Data Collection, Labeling and Training 
4.5 Rising Auto 
4.5.1 Profile 
4.5.3 Full Fusion Algorithm 
4.5.4 Full Fusion Algorithm: Application Effect
4.6 Leapmotor
4.6.1 Profile
4.6.2 Full Domain Self-Research 
4.6.3 Algorithm Capabilities and Future Planning
4.7.1 Profile
4.7.2 ZEEKR's Mobileye Solution 
4.7.3 Cooperation between ZEEKR and Waymo and Self-Developed Algorithm Solution
4.8 BMW 
4.8.1 Profile
4.8.2 Algorithms for BMW 
4.8.3 Cooperation in Autonomous Driving
4.9 SAIC 
4.9.1 SAIC Motor Autonomous Driving Layout 
4.9.2 Introduction to Z-ONE Tech
4.9.3 Z-ONE Tech Computing Platform 
4.9.4 SAIC Artificial Intelligence Laboratory
4.10 General Motors 
4.10.1 General Motors Autonomous Driving Layout 
4.10.2 Introduction to Cruise 
4.10.3 Cruise perception Algorithm 
4.10.4 Cruise Decision Algorithm 
4.10.5 Cruise Autonomous Driving Development Tool Chain 
4.10.6 Cruise's Robotaxi and Future Plans

5. Research on Robtaxi Algorithm for L4 Autonomous Driving
5.1 Baidu Apollo 
5.1.1 Profile 
5.1.2 Driverless Technology Architecture History 
5.1.3 Introduction to Perception Algorithm 
5.1.4 Autonomous Vehicle Positioning Technology 
5.1.5 Latest Highlights Technology
5.2.1 Profile 
5.2.2 Main Business and Business Model 
5.2.3 Core Technology and the Latest Autonomous Driving System Configuration 
5.2.4 Sensor Fusion Solution 
5.2.5 Cooperation
5.3 WeRide
5.3.1 Profile 
5.3.2 WeRide One 
5.3.3 Algorithm Modules for WeRide One 
5.3.4 Cooperation
5.4.1 Profile
5.4.2 Technology 
5.4.3 Self-Developed Algorithm 
5.4.4 Cooperation and Latest Dynamics
5.5 QCraft
5.5.1 Profile 
5.5.2 Products 
5.5.3 Hyperfusion Perception Solution
5.5.4 Prediction Algorithm 
5.5.5 Planning Algorithm 
5.5.6 Classical Algorithm Model
5.5.7 Cooperation
5.6 UISEE Technology
5.6.1 Profile 
5.6.2 U-Drive Intelligent Driving System 
5.6.3 Visual Positioning Technology 
5.6.4 Latest Algorithm
5.6.5 R & D Planning and Partners
5.7 AutoX
5.7.1 Profile 
5.7.2 Self-Driving Technology 
5.7.3 Self-Driving Fusion Perception System xFusion
5.8 DiDi Autonomous Driving
5.8.1 Profile
5.8.2 Autonomous Driving Technology
5.9 Waymo
5.9.1 Profile
5.9.2 Sensor Product Portfolio
5.9.3 Technology 
5.9.4 Behavior Prediction Algorithm 
5.9.5 Latest News

6. Development Trend of Autonomous Driving Algorithms 

6.1 Algorithm Trend I
6.2 Algorithm Trend II
6.3 Algorithm Trend III 
6.4 Algorithm Trend IV 
6.5 Algorithm Trend V
6.6 Algorithm Trend VI 
6.7 Algorithm Trend VII

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla’s big pr...

Qualcomm 8295 Based Cockpit Domain Controller Dismantling Analysis Report

ResearchInChina dismantled 8295-based cockpit domain controller of an electric sedan launched in December 2023, and produced the report SA8295P Series Based Cockpit Domain Controller Analysis and Dism...

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

Automotive Memory Chip and Storage Industry Report, 2024

The global automotive memory chip market was worth USD4.76 billion in 2023, and it is expected to reach USD10.25 billion in 2028 boosted by high-level autonomous driving. The automotive storage market...

Automotive AUTOSAR Platform Research Report, 2024

AUTOSAR Platform research: the pace of spawning the domestic basic software + full-stack chip solutions quickens. In the trend towards software-defined vehicles, AUTOSAR is evolving towards a more o...

China Passenger Car Electronic Control Suspension Industry Research Report, 2024

Research on Electronic Control Suspension: The assembly volume of Air Suspension increased by 113% year-on-year in 2023, and the magic carpet suspension of independent brands achieved a breakthrough ...

Global and China Hybrid Electric Vehicle (HEV) Research Report, 2023-2024

1. In 2025, the share of plug-in/extended-range hybrid electric passenger cars by sales in China is expected to rise to 40%. In 2023, China sold 2.754 million plug-in/extended-range hybrid electric p...

2005- All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号