AI Foundation Model and Autonomous Driving Intelligent Computing Center Research Report, 2023
  • Mar.2023
  • Hard Copy
  • USD $2,400
  • Pages:63
  • Single User License
    (PDF Unprintable)       
  • USD $2,200
  • Code: WWJ004
  • Enterprise-wide License
    (PDF Printable & Editable)       
  • USD $3,300
  • Hard Copy + Single User License
  • USD $2,600
      

New infrastructures for autonomous driving: AI foundation models and intelligent computing centers are emerging.

In recent years, the boom of artificial intelligence has actuated autonomous driving, and the troika of artificial intelligence is: data, algorithm, and computing power. This report highlights the research on new infrastructures for autonomous driving algorithms and computing power: AI foundation models and intelligent computing centers.

Large AI model, or foundation model, internationally known as pre-trained model, refers to a model trained on a vast quantity of unlabeled data at scale resulting in a model that can be adapted to a wide range of downstream tasks. The Transformer networks Google proposed in 2017 laid the foundation of mainstream algorithm architecture for current foundation models. The ViT (Vision Transformer), introduced by Google in 2020, first applied the Transformer architecture to the image classification task in the field of computer vision (CV). And then Tesla’s introduction of Transformer foundation models into autopilot started the adoption of large AI models in autonomous driving.

Key features of AI foundation models:

1. Generalization capability is strong.

AI foundation models can capture knowledge from a mass of labeled and unlabeled data, and fine-tunes specific tasks by storing knowledge into enormous parameters. 

For example, Baidu ERNIE Foundation Model learns from large knowledge graphs and massive unstructured data, and then works with companies to build industry foundation models. Up to now, ERNIE Model has released 11 industry models. Wherein, Geely-Baidu ERNIE, a large automotive industry model co-built by Baidu and Geely in November 2022, uses Baidu ERNIE Foundation Model 3.0 for fine-tuning and verification in three tasks: intelligent customer service knowledge base expansion, short answer generation for vehicle speech systems, and knowledge base construction in automotive field.

AI中心 1_副本.png

2. Have self-supervised learning capability, reducing training and development costs

The self-supervised learning method of AI foundation models can reduce data annotations, and partly solve the problems of high cost, long cycle and low accuracy of manual annotations. For example, the video self-supervised foundation model, unveiled by Haomo.ai in January 2023, first builds a large model based on data clips, and adjusts the model using a part of manually annotated clip data, in which only 10% of the key frames are manually annotated, and the other 90% are not; and then trains the entire model to guess the content of the next frame according to the current frame, and automatically annotates the remaining 90% frames, so as to achieve 100% automatic annotation and lower the cost of annotation. 

AI中心 2_副本.png

3. AI foundation models can break the accuracy limitations of existing model structures.

The experimental researches in recent years show that larger models and data scale may break the existing accuracy limitations. For example, the INTERN Foundation Model 2.0 SenseTime released in September 2022 has been a leading performer in model support in more than 40 visual tasks in 12 categories, outperforming world-renowned institutions in related fields.

AI中心 3_副本.png

The use of AI foundation models can not only greatly expedite algorithm iteration, but also directly shorten the iteration cycle of autonomous driving systems. To match large-scale parameters and mass data calculations in models, some OEMs and autonomous driving technology developers have begun to build data computing centers that can provide large computing power and train foundation models, namely, intelligent computing centers.

Intelligent computing center refers to the infrastructure for building intelligent computing server clusters based on chips (e.g., GPU and FPGA) to provide intelligent computing power. For intelligent computing centers need long construction period and huge initial investment, only some powerful OEMs and companies make layout of construction at present. Examples include Geely which launched the Xingrui Intelligent Computing Center in January 2023, with total investment of RMB1 billion and 5,000 cabinets planned. The facility currently boasts total cloud computing power of 810 petaflops per second, which is expected to expand to 1,200 petaflops per second in 2025. It covers such services as intelligent connectivity, intelligent driving, new energy safety, and trial production experiments, improving Geely's overall R&D efficiency by 20%.

AI中心 4_副本.png

Furthermore, China is also encouraging rapid development of intelligent computing centers. In 2022, the State Council issued the 14th Five-Year Plan for the Development of the Digital Economy, suggesting promoting the orderly development of intelligent computing centers and building new intelligent infrastructures that integrate intelligent computing power, general algorithms, and development platforms. In February 2022, the East-Data-West-Computing Project was fully launched. National computing power hub nodes started construction in 8 regions, i.e., Beijing-Tianjin-Hebei, Yangtze River Delta, Guangdong-Hong Kong-Macao Greater Bay Area, Chengdu-Chongqing, Inner Mongolia, Guizhou, Gansu, and Ningxia, and 10 national data center clusters were planned. So far, there have been more than 30 cities in China building or proposing to build intelligent computing centers, some of which have become operational.

AI中心 5_副本.png

1 Overview of AI Foundation Model and Intelligent Computing Center

1.1 Definition of AI Foundation Model 
1.1.1 Development History of AI Foundation Model
1.1.2 Role of Foundation Model in Development of Artificial Intelligence (AI)
1.1.3 Business Models of AI Foundation Model 
1.1.4 Challenges in Implementation of AI Foundation Model and Future Development Trends 
1.1.5 Advantages of AI Foundation Model Applied to Autonomous Driving
1.2 Definition of Intelligent Computing Center
1.2.1 Development History of Intelligent Computing Center in China 
1.2.2 Intelligent Computing Center 2.0 
1.2.3 Construction of Intelligent Computing Centers
1.2.4 Intelligent Computing Center Industry Chain
1.2.5 Reasons for Establishing Intelligent Computing Centers for Autonomous Driving
1.2.6 Cost of Building An Intelligent Computing Center for Autonomous Driving
1.2.7 Problems in Building An Intelligent Computing Center for Autonomous Driving

1.3 Summary of Automotive Companies with Foundation Models and Intelligent Computing Centers

2 Autonomous Driving Companies

Comparison of Foundation Models and Intelligent Computing Centers between Autonomous Driving Companies

2.1 Haomo.ai
2.1.1 Profile
2.1.2 Data Intelligence System - MANA System
2.1.3 Intelligent Computing Center - MANA OASIS
2.1.4 Research and Application of Foundation Models
2.1.5 Five Models of MANA
2.1.6 Separate Introduction of Five Models
2.1.7 Real Scene Simulation System
2.1.8 Data Sources
2.1.9 Assistance of the Five Foundation Models and the Intelligent Computing Center to Haomo.ai
2.2 QCraft
2.2.1 Profile
2.2.2 Feature and Timing Fusion Foundation Model - OmniNet
2.2.3 OmniNet Foundation Model Promotes the Implementation of Production Solutions
2.2.4 Autonomous Driving R&D Toolchain - QCraft Matrix

3 Providers 

Comparison of Foundation Models and Intelligent Computing Centers between Providers

3.1 Baidu
3.1.1 Introduction to Baidu AI Cloud
3.1.2 Introduction to Baidu Apollo
3.1.3 ERNIE Foundation Model 
3.1.4 Application of ERNIE Foundation Model in Automotive Industry
3.1.5 ERNIE Foundation Model Improves Baidu’s Perception Algorithm Capabilities
3.1.6 Baidu Intelligent Computing Center
3.2 Inspur
3.2.1 Profile
3.2.2 Three Highlights of Huaihai Intelligent Computing Center
3.3 SenseTime
3.3.1 Profile
3.3.2 Cornerstone of SenseAuto
3.3.3 SenseTime Intelligent Computing Center AIDC
3.3.4 Application of SenseTime Artificial Intelligence Data Center (AIDC) in Intelligent Vehicles
3.3.5 INTERN Foundation Model
3.3.6 INTERN Foundation Model 2.0
3.3.7 SenseTime Data Closed-loop Product Solution - SenseAuto Empower

4 OEMs

Comparison of Foundation Models and Intelligent Computing Centers between OEMs

4.1 Xpeng
4.1.1 Profile
4.1.2 Transformer Foundation Model
4.1.3 Data Processing
4.1.4 Fuyao Intelligent Computing Center
4.2 Geely
4.2.1 Profile
4.2.2 Geely Xingrui Computing Center
4.2.3 Leading Technologies of Geely Xingrui Computing Center
4.2.4 Capabilities of Geely Xingrui Computing Center
4.2.5 Geely-Baidu ERNIE Foundation Model 
4.3 Tesla
4.3.1 Profile
4.3.2 Data Driven System
4.3.3 Transformer Foundation Model
4.3.4 Tesla Dojo Supercomputing Center

Automotive Microcontroller Unit (MCU) Industry Report, 2024

With policy support, the localization rate of automotive MCU will surge. Chinese electric vehicle companies are quickening their pace of purchasing domestic chips to reduce their dependence on impor...

Automotive Digital Key Industry Trends Research Report, 2024

Automotive Digital Key Industry Trends Research Report, 2024 released by ResearchInChina highlights the following: Forecast for automotive digital key market;Digital key standard specifications and co...

Automotive XR (VR/AR/MR) Industry Report, 2024

Automotive XR (Extended Reality) is an innovative technology that integrates VR (Virtual Reality), AR (Augmented Reality) and MR (Mixed Reality) technologies into vehicle systems. It can bring drivers...

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024

OEMs’ Next-generation In-vehicle Infotainment (IVI) System Trends Report, 2024 released by ResearchInChina systematically analyzes the iteration process of IVI systems of mainstream automakers in Chin...

Global and China Automotive Lighting System Research Report, 2023-2024

Installations of intelligent headlights and interior lighting systems made steady growth. From 2019 to 2023, the installations of intelligent headlights and interior lighting systems grew steadily. I...

Automotive Display, Center Console and Cluster Industry Report, 2024

Automotive display has become a hotspot major automakers compete for to create personalized and differentiated vehicle models. To improve users' driving experience and meet their needs for human-compu...

Global and China Passenger Car T-Box Market Report, 2024

Global and China Passenger Car T-Box Market Report, 2024 combs and summarizes the overall global and Chinese passenger car T-Box markets and the status quo of independent, centralized, V2X, and 5G T-B...

AI Foundation Models’ Impacts on Vehicle Intelligent Design and Development Research Report, 2024

AI foundation models are booming. The launch of ChapGPT and SORA is shocking. Scientists and entrepreneurs at AI frontier point out that AI foundation models will rebuild all walks of life, especially...

Analysis on Geely's Layout in Electrification, Connectivity, Intelligence and Sharing

Geely, one of the leading automotive groups in China, makes comprehensive layout in electrification, connectivity, intelligence and sharing. Geely boasts more than ten brands. In 2023, it sold a tota...

48V Low-voltage Power Distribution Network (PDN) Architecture Industry Report, 2024

Automotive low-voltage PDN architecture evolves from 12V to 48V system. Since 1950, the automotive industry has introduced the 12V system to power lighting, entertainment, electronic control units an...

Automotive Ultrasonic Radar and OEMs’ Parking Route Research Report, 2024

1. Over 220 million ultrasonic radars will be installed in 2028. In recent years, the installations of ultrasonic radars in passenger cars in China surged, up to 121.955 million units in 2023, jumpin...

Automotive AI Foundation Model Technology and Application Trends Report, 2023-2024

Since 2023 ever more vehicle models have begun to be connected with foundation models, and an increasing number of Tier1s have launched automotive foundation model solutions. Especially Tesla’s big pr...

Qualcomm 8295 Based Cockpit Domain Controller Dismantling Analysis Report

ResearchInChina dismantled 8295-based cockpit domain controller of an electric sedan launched in December 2023, and produced the report SA8295P Series Based Cockpit Domain Controller Analysis and Dism...

Global and China Automotive Comfort System (Seating system, Air Conditioning System) Research Report, 2024

Automotive comfort systems include seating system, air conditioning system, soundproof system and chassis suspension to improve comfort of drivers and passengers. This report highlights seating system...

Automotive Memory Chip and Storage Industry Report, 2024

The global automotive memory chip market was worth USD4.76 billion in 2023, and it is expected to reach USD10.25 billion in 2028 boosted by high-level autonomous driving. The automotive storage market...

Automotive AUTOSAR Platform Research Report, 2024

AUTOSAR Platform research: the pace of spawning the domestic basic software + full-stack chip solutions quickens. In the trend towards software-defined vehicles, AUTOSAR is evolving towards a more o...

China Passenger Car Electronic Control Suspension Industry Research Report, 2024

Research on Electronic Control Suspension: The assembly volume of Air Suspension increased by 113% year-on-year in 2023, and the magic carpet suspension of independent brands achieved a breakthrough ...

Global and China Hybrid Electric Vehicle (HEV) Research Report, 2023-2024

1. In 2025, the share of plug-in/extended-range hybrid electric passenger cars by sales in China is expected to rise to 40%. In 2023, China sold 2.754 million plug-in/extended-range hybrid electric p...

2005- www.researchinchina.com All Rights Reserved 京ICP备05069564号-1 京公网安备1101054484号