ADAS and Autonomous Driving Industry Chain Report 2018 (VI)- Commercial Vehicle Automated Driving
-
Aug.2018
- Hard Copy
- USD
$3,600
-
- Pages:195
- Single User License
(PDF Unprintable)
- USD
$3,400
-
- Code:
ZYW239
- Enterprise-wide License
(PDF Printable & Editable)
- USD
$5,000
-
- Hard Copy + Single User License
- USD
$3,800
-
ADAS and Autonomous Driving Industry Chain Report 2018 - Commercial Vehicle Automated Driving, about 195 pages, covers the following:
Overview of autonomous commercial vehicle industry
Technologies, stages and costs of autonomous commercial vehicle
Truck platooning autonomous driving
Foreign commercial vehicle automated driving solution providers
Chinese commercial vehicle automated driving solution providers
Layout of foreign commercial vehicle makers in autonomous driving
Layout of Chinese commercial vehicle makers in autonomous driving
With the enforcement of the new standard Safety Specifications for Commercial Bus, the commercial vehicle ADAS market in China springs up, and start-ups such as Roadefend, Maxieye, Minieye and INVO have earned the revenue of tens of millions or even hundreds of millions of yuan.
In terms of autonomous commercial vehicle, solution providers such as Westwell Lab, TrunkTech, PlusAI, TuSimple and FABU Technology have arisen. Most of them are committed to unmanned port trucks with autonomous container truck solutions. In China, there are more than 20,000 container trucks at ports, and each driver is paid about RMB300,000 per year, an opportunity for autonomous driving replacement.
There are many challenges for the access of autonomous driving to any particular scenario. For instance, driverless container trucks need to be in line with the production logic and dock management system of ports and interact with bridge cranes, tire cranes and other equipment. It sounds like autonomous driving along fixed routes. In fact, a new driving environment will be created in less than half a day after the containers stacked at ports are hoisted back and forth.

Autonomous commercial vehicles are first seen as port container trucks, which is quite similar to low-speed automated vehicle applied for driverless delivery. Closed areas, low-speed driving, the rising labor costs as well as the developed e-commerce and logistics in China are all driving factors.
Commercial vehicle automated driving solution providers often partner with commercial vehicle manufacturers to enter a target market.

After the first-kilometers and last-kilometers unmanned freight market starts, the much larger freeway autonomous truck market will grow in a progressive way. Initially, autonomous trucks will be realized through platooning -- the first truck is manipulated by a driver while the following trucks are not.
Platooning will go through CACC, Platooning, Connected Platooning and other stages.

Europe is a leader in platooning. Individual carmakers conduct Platooning tests, and multiple automakers organize cross-brand trucks for driving tests and even hold European Truck Platooning Challenge. There is an urgent need for Chinese companies to catch up in this field.
The amazingly huge autonomous driving market is full of difficulties and challenges to ground, and the commercialization process is slower than expected. Fortunately, the Chinese market has witnessed the world's largest number of autonomous driving start-ups that work closely with traditional automakers to step into various segments and solve all technical problems around the clock. Like Chinese electric vehicle market which is the largest in the world, China's autonomous driving market is bound to be the biggest one around the globe.
1 Overview of Commercial Vehicle Automated Driving Industry
1.1 Active Safety and ADAS Become Mandatory Requirements
1.2 Safety Specifications for Commercial Vehicle for Cargo Transportation (2018)
1.3 Domestic Laws on Active Safety and ADAS
1.4 Reference Architecture of Commercial Vehicle Automated Driving
1.5 Evolution of Commercial Vehicle Automated Driving
1.6 Typical Application Scenarios of Commercial Vehicle Automated Driving
1.7 Technical Solutions for Typical Application Scenarios of Commercial Vehicle Automated Driving
1.8 Roadmap of Commercial Truck Automated Driving
1.9 Key Challenges of Commercial Vehicle Automated Driving
1.10 Most Problems in Truck Industry Can Be Solved via Automated Driving
1.11 Port Driverless Truck
2 Technology, Stages and Costs of Commercial Vehicle Automated Driving
2.1 Technology and Development Stages of Commercial Vehicle Automated Driving
2.1.1 Commercial Vehicle Automated Driving Technology: Perception, Decision-making and Control
2.1.2 Key Technologies of Autonomous Truck
2.1.3 Expected Development Paths of Automated Commercial Vehicle
2.1.4 Truck Automated Driving by Stage
2.1.5 Functions in L0-L5
2.2 ADAS Functions Required by Commercial Vehicle
2.2.1 The Most Fundamental ADAS Functions on Truck
2.2.2 ADAS on Volvo Commercial Vehicles
2.3 Costs of Truck Automated Driving
2.3.1 Impact of Truck Automated Driving on Operating Costs
2.3.2 Three Application Cases of Truck Automated Driving
2.3.3 Calculation of Payback Period of Automated Driving in Application Cases
2.3.4 Impact of Vehicle Platooning on Payback Period
2.4 Challenges and Influence of Automated Truck
2.4.1 Impact on Stakeholders in Truck Industry
2.4.2 Technology Push of Different Stakeholders
3 Commercial Vehicle Platooning Autonomous Driving
3.1 Overview of Truck Platooning
3.1.1 Key Components for Autonomous Truck Platooning
3.1.2 Truck Platooning Technology: Truck Connection
3.1.3 Truck Platooning Technology: CACC (Cooperative Adaptive Cruise Control)
3.1.4 Vehicle Platooning Technology: from ACC, CACC to Connected Platooning
3.1.5 Design Structure of Truck CACC System
3.1.6 Cooperative Truck Platooning Aerodynamics
3.2 Participants in Truck Platooning
3.2.1 Competitive Edges of Large Fleet Operators in Platooning
3.2.2 List of Participants in Platooning Field
3.3 Business and Social Value of Truck Platooning
3.4 Procedures of Truck Platooning
3.5 Development of Truck Platooning in Europe
3.5.1 Roadmap of Truck Platooning Automated Driving in Europe
3.5.2 European Truck Platooning Challenge (ETPC)
3.5.3 Multi-brand Truck Platooning Programs in Europe
3.5.4 Truck Platooning Program in Europe: Sweden4Platooning
3.5.5 Truck Platooning Program in Europe: ENSEMBLE
3.5.6 Finland-Norway Truck Platooning Test
3.6 Truck Platooning Programs in the United States
3.6.1 FHWA-FMCSA Truck Platooning Program
3.6.2 Nine States Allow Tests and Over 20 States Are Interested in It
4 Foreign Providers of Commercial Vehicle Automated Driving Solutions
4.1 Starsky Robotics
4.1.1 Technology Solutions
4.2 Embark
4.2.1 Embark AI System
4.3 Peloton Technology
4.3.1 Peloton Team
4.3.2 Peloton Truck Platooning System
4.3.3 Peloton PlatoonPRO
4.3.4 Peloton + Omnitracs Strengthen Fleet Management and Platooning
4.3.5 Industry Leaders’ Investment into Peloton Technology
4.3.6 FCAM Reduces Rear-end Collisions by 71%
4.4 BestMile
4.4.1 Core Engine of BestMile Mobility Platform
4.4.2 System Architecture of BestMile Mobility Platform
4.4.3 APP of BestMile Mobility Platform
4.4.4 BestMile’s Solutions for Autonomous Fleet Management
4.4.5 Application of BestMile’s Products to Autonomous Bus
4.4.6 BestMile’s Specific Solutions: Ride-hailing and Micro-transit
4.4.7 Integration under Multi-mode Environment
4.4.8 Value Chain, Customers and Partners of BestMile
4.4.9 Cooperative Projects of BestMile
4.5 Oxbotica
4.5.1 Oxbotica’s Products
4.5.2 Oxbotica’s Automated Driving Programs
4.6 Einride
4.6.1 T-Pod and T-Log
4.7 KeepTruckin
4.7.1 KeepTruckin’s Products
4.8 INRIX
4.8.1 INRIX AV Road Rules Platform
4.9 WABCO
4.9.1 Development Course
4.9.2 Layout in Automated Driving Products
4.9.3 OnGuardACTIVE
4.9.4 ADAS System
4.9.5 Industry Leader
4.10 Kodiak
5 Chinese Commercial Vehicle Automated Driving Solution Providers
5.1 Tianjin Tsintel Technology Co., Ltd.
5.1.1 Tsintel’s Commercial Vehicle AEB
5.1.2 Architecture and Application Cases of Tsintel’s Commercial Vehicle AEB Systems
5.1.3 Tsintel’s Automated Driving Solutions for Specific Scenarios
5.2 Beijing TuSimple Future Technology Co., Ltd.
5.2.1 Core Technologies and Position
5.2.2 TuSimple Makes Inroad into the Field of Port Container Truck Autonomous Transportation
5.3 Shanghai Westwell Information Technology Co., Ltd.
5.3.1 Core Technologies
5.3.2 Products and Applications
5.4 Hangzhou Zhuying Technology Co., Ltd./Fabu Technology Limited
5.4.1 Core Technologies
5.4.2 Products and Development Strategy
5.5 PlusAI Inc.
5.5.1 Core Technologies and Application Scenarios
5.5.2 Application Cases
5.6 TrunkTech
5.6.1 TrunkTech’s Autonomous Electric Trucks
5.7 Changsha Intelligent Driving Research Institute – A Supplier of Intelligent Logistics Vehicles and Systems
5.7.1 Heavy Truck Automated Driving Solutions
5.8 Henan Huhang Industry Co., Ltd.
5.8.1 Coach Application Solution
5.8.2 Bus Application Solution
5.8.3 Hazardous Chemicals Transport Vehicle Application Solution
5.8.4 Truck Application Solution
5.8.5 Learner-driven Vehicle Application Solution
5.9 G7
6 Automated Driving Layout of Foreign Commercial Vehicle Companies
6.1 Volkswagen (VW)
6.1.1 VW’s Automated Driving Projects
6.1.2 AdaptIVe Project
6.1.3 L3PILOT Project
6.1.4 Roadmap of Mobility Services and Products
6.1.5 MaaS Commercial Vehicles
6.1.6 Autonomous Truck Layout
6.1.7 MAN SE’s Autonomous Trucks for Highway Construction
6.2 PACCAR
6.2.1 Share in Heavy Truck Market and Industry Ranking
6.2.2 Financial Data
6.2.3 New Products and Technologies
6.2.4 Automated Driving Technologies and Truck Platooning
6.3 Volvo
6.3.1 Financial Status by Division
6.3.2 Mass-produced Active Safety Systems
6.3.3 Future Trucks
6.3.4 Layout of Commercial Vehicle Automated Driving
6.4 Daimler
6.4.1 Layout of Commercial Vehicle Automated Driving
6.4.2 SuperTruck 1 Project – Development Roadmap
6.4.3 SuperTruck 1 Project – Overview
6.4.4 SuperTruck 2 Project – Challenges
6.4.5 SuperTruck 2 Project – Development Steps
6.4.6 SuperTruck 2 Project – Stages
6.4.7 Autonomous Truck Layout and Partners
6.4.8 Autonomous Truck ADAS Roadmap
6.5 SCANIA
6.5.1 Financial Status, 2013-2017
6.5.2 Operating Business and Market Status
6.5.3 Automated Driving Solutions
6.5.4 Autonomous Trucks and Bus Solutions
6.5.5 Autonomous Tramcar, Truck and Bus
6.5.6 Automated Driving Test
6.5.7 Autonomous Truck Platooning
7 Automated Driving Layout of Chinese Commercial Vehicle Companies
7.1 Beiqi Foton Motor Co., Ltd.
7.1.1 Strategic Clients and Global Partners
7.1.2 Foton and Baidu Cooperated to Launch Autonomous Trucks
7.1.3 Foton Acquired China’s First Commercial Vehicle Automated Driving Test License
7.1.4 Foton’s Intelligent Driving Layout
7.1.5 Foton’s Commercial Vehicle Ecosystem
7.2 Dongfeng Motor Corporation
7.2.1 Dongfeng’s Commercial Vehicle Application Scenario Planning
7.2.2 Intelligent Vehicle Planning of Dongfeng Liuzhou Motor Co., Ltd.
7.3 China National Heavy Duty Truck Group Co., Ltd. (SINOTRUCK)
7.4 FAW Jiefang Automotive Co., Ltd.
7.5 Shaanxi Automobile Holdings Limited
7.6 SAIC-IVECO Hongyan Commercial Vehicle Co., Ltd.
7.7 Zhengzhou Yutong Bus Co., Ltd.
7.8 Xiamen King Long United Automotive Industry Co., Ltd.
7.9 CRRC Corporation Limited
Auto Shanghai 2025 Summary Report
The post-show summary report of 2025 Shanghai Auto Show, which mainly includes three parts: the exhibition introduction, OEM, and suppliers. Among them, OEM includes the introduction of models a...
Automotive Operating System and AIOS Integration Research Report, 2025
Research on automotive AI operating system (AIOS): from AI application and AI-driven to AI-native
Automotive Operating System and AIOS Integration Research Report, 2025, released by ResearchInChina, ...
Software-Defined Vehicles in 2025: OEM Software Development and Supply Chain Deployment Strategy Research Report
SDV Research: OEM software development and supply chain deployment strategies from 48 dimensions
The overall framework of software-defined vehicles: (1) Application software layer: cockpit software, ...
Research Report on Automotive Memory Chip Industry and Its Impact on Foundation Models, 2025
Research on automotive memory chips: driven by foundation models, performance requirements and costs of automotive memory chips are greatly improved.
From 2D+CNN small models to BEV+Transformer found...
48V Low-voltage Power Distribution Network (PDN) Architecture and Supply Chain Panorama Research Report, 2025
For a long time, the 48V low-voltage PDN architecture has been dominated by 48V mild hybrids. The electrical topology of 48V mild hybrids is relatively outdated, and Chinese OEMs have not given it suf...
Research Report on Overseas Cockpit Configuration and Supply Chain of Key Models, 2025
Overseas Cockpit Research: Tariffs stir up the global automotive market, and intelligent cockpits promote automobile exports
ResearchInChina has released the Research Report on Overseas Cockpit Co...
Automotive Display, Center Console and Cluster Industry Report, 2025
In addition to cockpit interaction, automotive display is another important carrier of the intelligent cockpit. In recent years, the intelligence level of cockpits has continued to improve, and automo...
Vehicle Functional Safety and Safety Of The Intended Functionality (SOTIF) Research Report, 2025
Functional safety research: under the "equal rights for intelligent driving", safety of the intended functionality (SOTIF) design is crucial
As Chinese new energy vehicle manufacturers propose "Equal...
Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025
AI-Defined Vehicle Report: How AI Reshapes Vehicle Intelligence?
Chinese OEMs’ AI-Defined Vehicle Strategy Research Report, 2025, released by ResearchInChina, studies, analyzes, and summarizes the c...
Automotive Digital Key (UWB, NearLink, and BLE 6.0) Industry Trend Report, 2025
Digital key research: which will dominate digital keys, growing UWB, emerging NearLink or promising Bluetooth 6.0?ResearchInChina has analyzed and predicted the digital key market, communication techn...
Integrated Battery (CTP, CTB, CTC, and CTV) and Battery Innovation Technology Report, 2025
Power battery research: 17 vehicle models use integrated batteries, and 34 battery innovation technologies are released
ResearchInChina released Integrated Battery (CTP, CTB, CTC, and CTV)and Battery...
AI/AR Glasses Industry Research Report, 2025
ResearchInChina released the " AI/AR Glasses Industry Research Report, 2025", which deeply explores the field of AI smart glasses, sorts out product R&D and ecological layout of leading domestic a...
Global and China Passenger Car T-Box Market Report 2025
T-Box Research: T-Box will achieve functional upgrades given the demand from CVIS and end-to-end autonomous driving
ResearchInChina released the "Global and China Passenger Car T-Box Market Report 20...
Automotive Microcontroller Unit (MCU) Industry Report, 2025
Research on automotive MCUs: the independent, controllable supply chain for automotive MCUs is rapidly maturing
Mid-to-high-end MCUs for intelligent vehicle control are a key focus of domestic produc...
Automotive LiDAR Industry Report, 2024-2025
In early 2025, BYD's "Eye of God" Intelligent Driving and Changan Automobile's Tianshu Intelligent Driving sparked a wave of mass intelligent driving, making the democratization of intelligent driving...
Software-Defined Vehicles in 2025: SOA and Middleware Industry Research Report
Research on automotive SOA and middleware: Development towards global SOA, cross-domain communication middleware, AI middleware, etc.
With the implementation of centrally integrated EEAs, OEM softwar...
Global and Chinese OEMs’ Modular and Common Technology Platform Research Report, 2025
Modular platforms and common technology platforms of OEMs are at the core of current technological innovation in automotive industry, aiming to enhance R&D efficiency, reduce costs, and accelerate...
Research Report on the Application of AI in Automotive Cockpits, 2025
Cockpit AI Application Research: From "Usable" to "User-Friendly," from "Deep Interaction" to "Self-Evolution"
From the early 2000s, when voice recognition and facial monitoring functions were first ...